RESUMO
Metasurfaces allow light to be manipulated at the nanoscale. Integrating metasurfaces with transition metal dichalcogenide monolayers provides additional functionality to ultrathin optics, including tunable optical properties with enhanced light-matter interactions. In this work, we demonstrate the realization of a polaritonic metasurface utilizing the sizable light-matter coupling of excitons in monolayer WSe2 and the collective lattice resonances of nanoplasmonic gold arrays. We developed a novel fabrication method to integrate gold nanodisk arrays in hexagonal boron nitride and thus simultaneously ensure spectrally narrow exciton transitions and their immediate proximity to the near-field of array surface lattice resonances. In the regime of strong light-matter coupling, the resulting van der Waals metasurface exhibits all key characteristics of lattice polaritons, with a directional and linearly polarized far-field emission profile dictated by the underlying nanoplasmonic lattice. Our work can be straightforwardly adapted to other lattice geometries, establishing structured van der Waals metasurfaces as means to engineer polaritonic lattices.
RESUMO
We report experimental and theoretical studies of MoTe2-MoSe2 heterobilayers with rigid moiré superlattices controlled by the twist angle. Using an effective continuum model that combines resonant interlayer electron tunneling with stacking-dependent moiré potentials, we identify the nature of moiré excitons and the dependence of their energies, oscillator strengths, and Landé g-factors on the twist angle. Within the same framework, we interpret distinct signatures of bound complexes among electrons and moiré excitons in nearly collinear heterostacks. Our work provides a fundamental understanding of hybrid moiré excitons and trions in MoTe2-MoSe2 heterobilayers and establishes the material system as a prime candidate for optical studies of correlated phenomena in moiré lattices.
RESUMO
Interlayer exciton diffusion is studied in atomically reconstructed MoSe_{2}/WSe_{2} heterobilayers with suppressed disorder. Local atomic registry is confirmed by characteristic optical absorption, circularly polarized photoluminescence, and g-factor measurements. Using transient microscopy we observe propagation properties of interlayer excitons that are independent from trapping at moiré- or disorder-induced local potentials. Confirmed by characteristic temperature dependence for free particles, linear diffusion coefficients of interlayer excitons at liquid helium temperature and low excitation densities are almost 1000 times higher than in previous observations. We further show that exciton-exciton repulsion and annihilation contribute nearly equally to nonlinear propagation by disentangling the two processes in the experiment and simulations. Finally, we demonstrate effective shrinking of the light emission area over time across several hundreds of picoseconds at the transition from exciton- to the plasma-dominated regimes. Supported by microscopic calculations for band gap renormalization to identify the Mott threshold, this indicates transient crossing between rapidly expanding, short-lived electron-hole plasma and slower, long-lived exciton populations.
RESUMO
We study experimentally and theoretically the hybridization among intralayer and interlayer moiré excitons in a MoSe_{2}/WS_{2} heterostructure with antiparallel alignment. Using a dual-gate device and cryogenic white light reflectance and narrow-band laser modulation spectroscopy, we subject the moiré excitons in the MoSe_{2}/WS_{2} heterostack to a perpendicular electric field, monitor the field-induced dispersion and hybridization of intralayer and interlayer moiré exciton states, and induce a crossover from type I to type II band alignment. Moreover, we employ perpendicular magnetic fields to map out the dependence of the corresponding exciton Landé g factors on the electric field. Finally, we develop an effective theoretical model combining resonant and nonresonant contributions to moiré potentials to explain the observed phenomenology, and highlight the relevance of interlayer coupling for structures with close energetic band alignment as in MoSe_{2}/WS_{2}.
RESUMO
Chirality is a fundamental asymmetry phenomenon, with chiral optical elements exhibiting asymmetric response in reflection or absorption of circularly polarized light. Recent realizations of such elements include nanoplasmonic systems with broken-mirror symmetry and polarization-contrasting optical absorption known as circular dichroism. An alternative route to circular dichroism is provided by spin-valley polarized excitons in atomically thin semiconductors. In the presence of magnetic fields, they exhibit an imbalanced coupling to circularly polarized photons and thus circular dichroism. Here, we demonstrate that polarization-contrasting optical transitions associated with excitons in monolayer WSe2 can be transferred to proximal plasmonic nanodisks by coherent coupling. The coupled exciton-plasmon system exhibits magneto-induced circular dichroism in a spectrally narrow window of Fano interference, which we model in a master equation framework. Our work motivates the use of exciton-plasmon interfaces as building blocks of chiral metasurfaces for applications in information processing, nonlinear optics, and sensing.
RESUMO
Vertical van der Waals heterostructures of semiconducting transition metal dichalcogenides realize moiré systems with rich correlated electron phases and moiré exciton phenomena. For material combinations with small lattice mismatch and twist angles as in MoSe2-WSe2, however, lattice reconstruction eliminates the canonical moiré pattern and instead gives rise to arrays of periodically reconstructed nanoscale domains and mesoscopically extended areas of one atomic registry. Here, we elucidate the role of atomic reconstruction in MoSe2-WSe2 heterostructures synthesized by chemical vapor deposition. With complementary imaging down to the atomic scale, simulations, and optical spectroscopy methods, we identify the coexistence of moiré-type cores and extended moiré-free regions in heterostacks with parallel and antiparallel alignment. Our work highlights the potential of chemical vapor deposition for applications requiring laterally extended heterosystems of one atomic registry or exciton-confining heterostack arrays.
RESUMO
We report the observation of ubiquitous contamination of dielectric substrates and poly(methyl methacrylate) matrices by organic molecules with optical transitions in the visible spectral range. Contamination sites of individual solvent-related fluorophores in thin films of poly(methyl methacrylate) constitute fluorescence hotspots with quantum emission statistics and quantum yields approaching 30% at cryogenic temperatures. Our findings not only resolve prevalent puzzles in the assignment of spectral features to various nanoemitters on bare dielectric substrates or in polymer matrices but also identify the means for the simple and cost-efficient realization of single-photon sources in the visible spectral range.
RESUMO
Defect-decorated single-wall carbon nanotubes have shown rapid growing potential for imaging, sensing, and the development of room-temperature single-photon sources. The key to the highly nonclassical emission statistics is the discrete energy spectrum of defect-localized excitons. However, variations in defect configurations give rise to distinct spectral bands that may compromise single-photon efficiency and purity in practical devices, and experimentally it has been challenging to study the exciton population distribution among the various defect-specific states. Here, we performed photon correlation spectroscopy on hexyl-decorated single-wall carbon nanotubes to unravel the dynamics and competition between neutral and charged exciton populations. With autocorrelation measurements at the single-tube level, we prove the nonclassical photon emission statistics of defect-specific exciton and trion photoluminescence and identify their mutual exclusiveness in photoemissive events with cross-correlation spectroscopy. Moreover, our study reveals the presence of a dark state with population-shelving time scales between 10 and 100 ns. These new insights will guide further development of chemically tailored carbon nanotube states for quantum photonics applications.
RESUMO
We demonstrate that localized excitons in luminescent carbon nanotubes can be utilized to study electrostatic fluctuations in the nanotube environment with sensitivity down to the elementary charge. By monitoring the temporal evolution of the cryogenic photoluminescence from individual carbon nanotubes grown on silicon oxide and hexagonal boron nitride, we characterize the dynamics of charge trap defects for both dielectric supports. We find a one order of magnitude reduction in the photoluminescence spectral wandering for nanotubes on extended atomically flat terraces of hexagonal boron nitride. For nanotubes on hexagonal boron nitride with pronounced spectral fluctuations, our analysis suggests proximity to terrace ridges where charge fluctuators agglomerate to exhibit areal densities exceeding those of silicon oxide. Our results establish carbon nanotubes as sensitive probes of environmental charge fluctuations and highlight their potential for applications in electrometric nanodevices with all-optical readout.
RESUMO
Matter structured on a length scale comparable to or smaller than the wavelength of light can exhibit unusual optical properties. Particularly promising components for such materials are metal nanostructures, where structural alterations provide a straightforward means of tailoring their surface plasmon resonances and hence their interaction with light. But the top-down fabrication of plasmonic materials with controlled optical responses in the visible spectral range remains challenging, because lithographic methods are limited in resolution and in their ability to generate genuinely three-dimensional architectures. Molecular self-assembly provides an alternative bottom-up fabrication route not restricted by these limitations, and DNA- and peptide-directed assembly have proved to be viable methods for the controlled arrangement of metal nanoparticles in complex and also chiral geometries. Here we show that DNA origami enables the high-yield production of plasmonic structures that contain nanoparticles arranged in nanometre-scale helices. We find, in agreement with theoretical predictions, that the structures in solution exhibit defined circular dichroism and optical rotatory dispersion effects at visible wavelengths that originate from the collective plasmon-plasmon interactions of the nanoparticles positioned with an accuracy better than two nanometres. Circular dichroism effects in the visible part of the spectrum have been achieved by exploiting the chiral morphology of organic molecules and the plasmonic properties of nanoparticles, or even without precise control over the spatial configuration of the nanoparticles. In contrast, the optical response of our nanoparticle assemblies is rationally designed and tunable in handedness, colour and intensity-in accordance with our theoretical model.
Assuntos
DNA/química , Nanopartículas Metálicas/química , Fenômenos Ópticos , Dicroísmo Circular , Ouro/química , Microscopia Eletrônica de TransmissãoRESUMO
We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wall defects. Our results establish disorder-induced crossover from the diffusive to the localized regime of nanotube excitons at cryogenic temperatures as a ubiquitous phenomenon in micelle-encapsulated and as-grown carbon nanotubes.
RESUMO
Coherent energy exchange between plasmons and excitons is a phenomenon that arises in the strong coupling regime resulting in distinct hybrid states. The DNA-origami technique provides an ideal framework to custom-tune plasmon-exciton nanostructures. By employing this well controlled self-assembly process, we realized hybrid states by precisely positioning metallic nanoparticles in a defined spatial arrangement with fixed nanometer-sized interparticle spacing. Varying the nanoparticle diameter between 30 nm and 60 nm while keeping their separation distance constant allowed us to precisely adjust the plasmon resonance of the structure to accurately match the energy frequency of a J-aggregate exciton. With this system we obtained strong plasmon-exciton coupling and studied far-field scattering at the single-structure level. The individual structures displayed normal mode splitting up to 170 meV. The plasmon tunability and the strong field confinement attained with nanodimers on DNA-origami renders an ideal tool to bottom-up assembly plasmon-exciton systems operating at room temperature.
Assuntos
DNA/química , Nanopartículas Metálicas , Ressonância de Plasmônio de SuperfícieRESUMO
As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.
Assuntos
DNA/química , Corantes Fluorescentes/química , Nanodiamantes/química , Modelos Moleculares , Conformação MolecularRESUMO
We report on a quantitative measurement of the spatial coherence of electrons emitted from a sharp metal needle tip. We investigate the coherence in photoemission triggered by a near-ultraviolet laser with a photon energy of 3.1 eV and compare it to dc-field emission. A carbon nanotube is brought into close proximity to the emitter tip to act as an electrostatic biprism. From the resulting electron matter wave interference fringes, we deduce an upper limit of the effective source radius both in laser-triggered and dc-field emission mode, which quantifies the spatial coherence of the emitted electron beam. We obtain (0.80±0.05) nm in laser-triggered and (0.55±0.02) nm in dc-field emission mode, revealing that the outstanding coherence properties of electron beams from needle tip field emitters are largely maintained in laser-induced emission. In addition, the relative coherence width of 0.36 of the photoemitted electron beam is the largest observed so far. The preservation of electronic coherence during emission as well as ramifications for time-resolved electron imaging techniques are discussed.
RESUMO
We report on the first antenna-enhanced optoelectronic microscopy studies on nanoscale devices. By coupling the emission and excitation to a scanning optical antenna, we are able to locally enhance the electroluminescence and photocurrent along a carbon nanotube device. We show that the emission source of the electroluminescence can be pointlike with a spatial extension below 20 nm. Topographic and antenna-enhanced photocurrent measurements reveal that the emission takes place at the location of highest local electric field indicating that the mechanism behind the emission is the radiative decay of excitons created via impact excitation.
Assuntos
Técnicas Eletroquímicas/instrumentação , Medições Luminescentes/instrumentação , Microscopia Confocal/instrumentação , Nanotubos de Carbono/ultraestrutura , Nanotubos de Carbono/químicaRESUMO
Magnetism in two-dimensional materials reveals phenomena distinct from bulk magnetic crystals, with sensitivity to charge doping and electric fields in monolayer and bilayer van der Waals magnet CrI3. Within the class of layered magnets, semiconducting CrSBr stands out by featuring stability under ambient conditions, correlating excitons with magnetic order and thus providing strong magnon-exciton coupling, and exhibiting peculiar magneto-optics of exciton-polaritons. Here, we demonstrate that both exciton and magnetic transitions in bilayer and trilayer CrSBr are sensitive to voltage-controlled field-effect charging, exhibiting bound exciton-charge complexes and doping-induced metamagnetic transitions. Moreover, we demonstrate how these unique properties enable optical probes of local magnetic order, visualizing magnetic domains of competing phases across metamagnetic transitions induced by magnetic field or electrostatic doping. Our work identifies few-layer CrSBr as a rich platform for exploring collaborative effects of charge, optical excitations, and magnetism.
RESUMO
Indistinguishable single photons in the telecom-bandwidth of optical fibers are indispensable for long-distance quantum communication. Solid-state single photon emitters have achieved excellent performance in key benchmarks, however, the demonstration of indistinguishability at room-temperature remains a major challenge. Here, we report room-temperature photon indistinguishability at telecom wavelengths from individual nanotube defects in a fiber-based microcavity operated in the regime of incoherent good cavity-coupling. The efficiency of the coupled system outperforms spectral or temporal filtering, and the photon indistinguishability is increased by more than two orders of magnitude compared to the free-space limit. Our results highlight a promising strategy to attain optimized non-classical light sources.
RESUMO
Moiré effects in vertical stacks of two-dimensional crystals give rise to new quantum materials with rich transport and optical phenomena that originate from modulations of atomic registries within moiré supercells. Due to finite elasticity, however, the superlattices can transform from moiré-type to periodically reconstructed patterns. Here we expand the notion of such nanoscale lattice reconstruction to the mesoscopic scale of laterally extended samples and demonstrate rich consequences in optical studies of excitons in MoSe2-WSe2 heterostructures with parallel and antiparallel alignments. Our results provide a unified perspective on moiré excitons in near-commensurate semiconductor heterostructures with small twist angles by identifying domains with exciton properties of distinct effective dimensionality, and establish mesoscopic reconstruction as a compelling feature of real samples and devices with inherent finite size effects and disorder. Generalized to stacks of other two-dimensional materials, this notion of mesoscale domain formation with emergent topological defects and percolation networks will instructively expand the understanding of fundamental electronic, optical and magnetic properties of van der Waals heterostructures.
Assuntos
Eletrônica , SemicondutoresRESUMO
We utilize cavity-enhanced extinction spectroscopy to directly quantify the optical absorption of defects in MoS2 generated by helium ion bombardment. We achieve hyperspectral imaging of specific defect patterns with a detection limit below 0.01% extinction, corresponding to a detectable defect density below 1 × 1011 cm-2. The corresponding spectra reveal a broad subgap absorption, being consistent with theoretical predictions related to sulfur vacancy-bound excitons in MoS2. Our results highlight cavity-enhanced extinction spectroscopy as efficient means for the detection of optical transitions in nanoscale thin films with weak absorption, applicable to a broad range of materials.
RESUMO
The controlled functionalization of single-walled carbon nanotubes with luminescent sp3-defects has created the potential to employ them as quantum-light sources in the near-infrared. For that, it is crucial to control their spectral diversity. The emission wavelength is determined by the binding configuration of the defects rather than the molecular structure of the attached groups. However, current functionalization methods produce a variety of binding configurations and thus emission wavelengths. We introduce a simple reaction protocol for the creation of only one type of luminescent defect in polymer-sorted (6,5) nanotubes, which is more red-shifted and exhibits longer photoluminescence lifetimes than the commonly obtained binding configurations. We demonstrate single-photon emission at room temperature and expand this functionalization to other polymer-wrapped nanotubes with emission further in the near-infrared. As the selectivity of the reaction with various aniline derivatives depends on the presence of an organic base we propose nucleophilic addition as the reaction mechanism.