RESUMO
With the huge progress in micro-electronics and artificial intelligence, the ultrasound probe has become the bottleneck in further adoption of ultrasound beyond the clinical setting (e.g. home and monitoring applications). Today, ultrasound transducers have a small aperture, are bulky, contain lead and are expensive to fabricate. Furthermore, they are rigid, which limits their integration into flexible skin patches. New ways to fabricate flexible ultrasound patches have therefore attracted much attention recently. First prototypes typically use the same lead-containing piezo-electric materials, and are made using micro-assembly of rigid active components on plastic or rubber-like substrates. We present an ultrasound transducer-on-foil technology based on thermal embossing of a piezoelectric polymer. High-quality two-dimensional ultrasound images of a tissue mimicking phantom are obtained. Mechanical flexibility and effective area scalability of the transducer are demonstrated by functional integration into an endoscope probe with a small radius of 3 mm and a large area (91.2×14 mm2) non-invasive blood pressure sensor.
Assuntos
Inteligência Artificial , Eletrônica , Ultrassonografia , Imagens de Fantasmas , Eletricidade , Transdutores , Desenho de EquipamentoRESUMO
Flexural waves play a significant role for the radiation of sound from plates. The analysis of flexural wave fields enables the detection of sources and transmission paths in plate-like structures. The measurement of these wave fields can be carried out indirectly by means of near-field acoustic holography, which determines the vibrational wave field from pressure information measured in a plane close to the plate under investigation. The reconstruction of the plate vibration is usually obtained by inverting the forward radiation problem, i.e., by inversion of an integral operator. In this article, it is shown that a pressure measurement taken in the extreme near-field of a vibrating plate can directly be used for the approximate analysis of the dispersive flexural wave field. The inversion step of near-field acoustic holography is not necessarily required if such an approximate solution is sufficient. The proposed method enables fast and simple analysis of dispersion characteristics. Application of dispersion compensation to the measured field allows for visualizations of propagating wavefronts, such that sources and scatterers in the plate can be detected. The capabilities of the described approach are demonstrated on several measurements.