Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(3): 391-397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195863

RESUMO

Quantifying recombination in halide perovskites is a crucial prerequisite to control and improve the performance of perovskite-based solar cells. While both steady-state and transient photoluminescence are frequently used to assess recombination in perovskite absorbers, quantitative analyses within a consistent model are seldom reported. We use transient photoluminescence measurements with a large dynamic range of more than ten orders of magnitude on triple-cation perovskite films showing long-lived photoluminescence transients featuring continuously changing decay times that range from tens of nanoseconds to hundreds of microseconds. We quantitatively explain both the transient and steady-state photoluminescence with the presence of a high density of shallow defects and consequent high rates of charge carrier trapping, thereby showing that deep defects do not affect the recombination dynamics. The complex carrier kinetics caused by emission and recombination processes via shallow defects imply that the reporting of only single lifetime values, as is routinely done in the literature, is meaningless for such materials. We show that the features indicative for shallow defects seen in the bare films remain dominant in finished devices and are therefore also crucial to understanding the performance of perovskite solar cells.

2.
ACS Mater Au ; 3(3): 215-230, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38089130

RESUMO

For indoor light harvesting, the adjustable band gap of molecular semiconductors is a significant advantage relative to many inorganic photovoltaic technologies. However, several challenges have to be overcome that include processability in nonhalogenated solvents, sufficiently high thicknesses (>250 nm) and high efficiencies at illuminances typically found in indoor environments. Here, we report on the development and application of new methods to quantify and identify performance losses based on thickness- and intensity-dependent current density-voltage measurements. Furthermore, we report on the fabrication of solar cells based on the blend PBDB-T:F-M processed in the nonhalogenated solvent o-xylene. In the low-intensity regime, insufficiently high shunt resistances limit the photovoltaic performance and by analyzing current density voltage-curves for solar cells with various shunt resistances we find that ∼100 kΩ cm2 are required at 200 lux. We provide a unified description of fill factor losses introducing the concept of light-intensity-dependent apparent shunts that originate from incomplete and voltage-dependent charge collection. In experiment and simulation, we show that good fill factors are associated with a photo-shunt inversely scaling with intensity. Intensity regions with photo-shunt resistances close to the dark-shunt resistance are accompanied by severe extraction losses. To better analyze recombination, we perform a careful analysis of the light intensity and thickness dependence of the open-circuit voltage and prove that trap-assisted recombination dominates the recombination losses at low light intensities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA