Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Oncol Pharm Pract ; 30(1): 30-37, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37021580

RESUMO

BACKGROUND: Despite robust evidence and international guidelines, to support routine pharmacogenetic (PGx) testing, integration in practice has been limited. This study explored clinicians' views and experiences of pre-treatment DPYD and UGT1A1 gene testing and barriers to and enablers of routine clinical implementation. METHODS: A study-specific 17-question survey was emailed (01 February-12 April 2022) to clinicians from the Medical Oncology Group of Australia (MOGA), the Clinical Oncology Society of Australia (COSA) and International Society of Oncology Pharmacy Practitioners (ISOPP). Data were analysed and reported using descriptive statistics. RESULTS: Responses were collected from 156 clinicians (78% medical oncologists, 22% pharmacists). Median response rate of 8% (ranged from 6% to 24%) across all organisations. Only 21% routinely test for DPYD and 1% for UGT1A1. For patients undergoing curative/palliative intent treatments, clinicians reported intent to implement genotype-guided dosing by reducing FP dose for DPYD intermediate metabolisers (79%/94%), avoiding FP for DPYD poor metabolisers (68%/90%), and reducing irinotecan dose for UGT1A1 poor metabolisers (84%, palliative setting only). Barriers to implementation included: lack of financial reimbursements (82%) and perceived lengthy test turnaround time (76%). Most Clinicians identified a dedicated program coordinator, i.e., PGx pharmacist (74%) and availability of resources for education/training (74%) as enablers to implementation. CONCLUSION: PGx testing is not routinely practised despite robust evidence for its impact on clinical decision making in curative and palliative settings. Research data, education and implementation studies may overcome clinicians' hesitancy to follow guidelines, especially for curative intent treatments, and may overcome other identified barriers to routine clinical implementation.


Assuntos
Farmacêuticos , Farmacogenética , Humanos , Irinotecano/uso terapêutico , Di-Hidrouracila Desidrogenase (NADP)/genética , Antimetabólitos , Oncologia
2.
Pharmacol Res Perspect ; 10(1): e00917, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35106954

RESUMO

SARS-CoV-2 interacting with its receptor, angiotensin-converting enzyme 2 (ACE2), turns the host response to viral infection into a dysregulated uncontrolled inflammatory response. This is because ACE2 limits the production of the peptide angiotensin II (Ang II) and SARS-CoV-2, through the destruction of ACE2, allows the uncontrolled production of Ang II. Recovery from trauma requires activation of both a tissue response to injury and activation of a whole-body response to maintain tissue perfusion. Tissue and circulating renin-angiotensin systems (RASs) play an essential role in the host response to infection and injury because of the actions of Ang II, mediated via its AT1 receptor. Both tissue and circulating arms of the renin angiotensin aldosterone system's (RAAS) response to injury need to be regulated. The effects of Ang II and the steroid hormone, aldosterone, on fluid and electrolyte homeostasis and on the circulation are controlled by elaborate feedback networks that respond to alterations in the composition and volume of fluids within the circulatory system. The role of Ang II in the tissue response to injury is however, controlled mainly by its metabolism and conversion to Ang-(1-7) by the enzyme ACE2. Ang-(1-7) has effects that are contrary to Ang II-AT1 R mediated effects. Thus, destruction of ACE2 by SARS-CoV-2 results in loss of control of the pro-inflammatory actions of Ang II and tissue destruction. Therefore, it is the response of the host to SARS-CoV-2 that is responsible for the pathogenesis of COVID-19.


Assuntos
COVID-19/etiologia , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2/fisiologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Enzima de Conversão de Angiotensina 2/fisiologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Inflamação/etiologia , Renina/antagonistas & inibidores , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA