Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(52): 112836-112846, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37840084

RESUMO

Hazards associated with microplastics (MPs) and the pollutants they absorb in freshwater lake ecosystems have become a hot research topic in academia. In this study, in order to investigate potential affiliated MP hazards, lake MP samples were collected from a typical subtropical freshwater lake system in China (Poyang Lake) during the dry season (here, you should show the specific months) to explore their potential toxic element (PTE) response (i.e., exposure to Cu, Pb, and Zn) respective to the ecological environment and resident phytoplankton. Results show that average MP abundance in surface water can reach up to 1800 items m-3, which higher in the Nanjishan Wetland National Nature Reserve (NWNNR) (1175 items m-3). Polyester (i.e., purified terephthalic acid [PTA]) and polyethylene (PE) were the main polymer types found in surface water, fiber was the main MP shape, and most of the MP particle sizes are greater than 100 µm. Moreover, phytoplankton biomass was significantly higher in the NWNNR compared to Poyang Lake's retention basin and water channel. It indicated that MP pollutant status of Poyang Lake is mild; however, the ecological risks that MPs pose should not be ignored. The significant positive correlation between MPs and PTEs indicated that PTE absorption and desorption by MPs may cause potential ecological stress. Although we anticipate no direct link between ecotoxicity and phytoplankton, MPs may have indirect effects on phytoplankton through their regulatory effects on PTE levels in water.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos , Fitoplâncton , Lagos , Ecossistema , Monitoramento Ambiental , Água , China , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 903: 166573, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633402

RESUMO

Although anthropogenic contamination has been regarded as the most important source of potentially toxic elements (PTEs) in soils of large river delta plains, the extent to which human activities affect PTEs in soils is worth exploring. This study used high density geochemical data to distinguish source patterns of PTEs in soils of the Pearl River Delta Economic Zone, a large industrialized and urbanized area in China. Enrichment factor, discriminant analysis, principal components analysis, cumulative distribution function, and positive matrix factorization were used to identify sources of PTEs in soils. The results indicated that parent material was the most significant factor affecting geochemical characteristics of PTEs in soils. Median concentrations of Cd, Cr, Cu, Hg, Pb, and Zn were 0.400, 88.5, 40.5, 0.143, 43.0, and 116.0 mg/kg for stream sediments, 0.333, 75.7, 39.0, 0.121, 42.6, and 98.5 mg/kg for deep soils, and 0.365, 74.0, 45.1, 0.143, 44.6, and 119.5 mg/kg for surface soils, respectively, all of which exceed relevant reference standards. Compared with stream sediments and deep soils, surface soils exhibit substantial concentrations of PTEs. Chemical weathering and erosion of parent materials distributed in the Pearl River Delta were the main sources of PTEs in soils. Diffuse contamination and many small local contamination sources distributed throughout the study area were the most significant anthropogenic sources of PTEs in surface soils. Intensive human activities failed to change the soil geochemical characteristics derived from the parent material at the regional scale. However, it could induce non-point source pollution and local severe PTEs pollution in surface soils.

3.
Water Res ; 224: 119105, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122449

RESUMO

Lake carbon (C) cycling is a key component of the global C cycle and associated C source and sink processes. The partial pressure of carbon dioxide (pCO2) and carbon dioxide (CO2) exchange flux at the lake-air interface (Fc) are controlled by complex physical, chemical, and biological mechanisms. It would be instructively significant to determine whether hydrological processes drive conversion shifts between C sources and sinks in floodplain-lake systems. Findings from this study show that exogenous input and in situ metabolism related to photosynthesis, respiration, and organic matter degradation were the main driving mechanisms of CO2 absorption and release in a large floodplain-lake system (i.e., Lake Poyang). Moreover, the intense and frequent water-level fluctuations inherent to floodplain-lakes may also have a direct or indirect impact on C cycling processes and CO2 exchange rates in floodplain-lake systems via their effect on physical processes, inorganic C transport, in-situ metabolic processes. We confirmed the potential of C source and sink conversion in floodplain-lakes under hydrological fluctuations, and strengthen the understanding of driving mechanisms of C source and sink conversion in floodplain systems.


Assuntos
Dióxido de Carbono , Lagos , China , Hidrologia , Água
4.
Water Res ; 209: 117963, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34933159

RESUMO

Particulate organic carbon (POC) is an important component of lake organic carbon (C) pools, of which different factors drive vertical distributions and sources. This study used the dual stable isotope (δ13C and δ15N) approach to investigate vertical POC sources and drivers in a large floodplain lake system. Findings showed that POC composition gradually changed from endogenous dominant to exogenous dominant sequentially from the surface layer to the bottom layer of Lake Poyang. Environmental factors associated with phytoplankton photosynthesis as well as nutrient levels primarily drove surface POC. Moreover, soil erosion, sediment deposition, and resuspension strongly affected POC distribution and composition in the middle and bottom layers of the lake. POC sources were also affected by factors associated with vertical mixing, such as wind speed and water depth. Litter from C3 plants significantly contributed to POC concentrations in the middle and bottom layers of the lake. Results from this study can benefit our overall understanding of the potential driving mechanisms of lake C cycling processes, aquatic ecosystem functions, and pollutant migration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA