Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Pharm ; 17(3): 965-978, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31968941

RESUMO

Dual glucagon-like peptide-1/glucagon receptor agonists have emerged as promising candidates for the treatment of diabetes and obesity. Issues of degradation sensitivity and rapid renal clearance are addressed, for example, by the conjugation of peptides to fatty acid chains, promoting reversible albumin binding. We use combined dynamic and static light scattering to directly measure the self-assembly of a set of dual peptide agonists based on the exendin-4 structure with varying fatty acid chain lengths in terms of apparent molecular mass and hydrodynamic radius (RS). We use NMR spectroscopy to gain an insight into the molecular architecture of the assembly. We investigate conformational changes of the monomeric subunits resulting from peptide self-assembly and assembly stability as a function of the fatty acid chain length using circular dichroism and fluorescence spectroscopy. Our results demonstrate that self-assembly of the exendin-4-derived dual agonist peptides is essentially driven by hydrophobic interactions involving the conjugated acyl chains. The fatty acid chain length affects assembly equilibria and the assembly stability, although the peptide subunits in the assembly retain a dynamic secondary structure. The assembly architecture is characterized by juxtaposition of the fatty acyl side chains and a hydrophobic cluster of the peptide moiety. This cluster experiences local conformational changes in the assembly compared to the monomeric unit leading to a reduction in solvent exposure. The N-terminal half of the peptide and a C-terminal loop are not in contact with neighboring peptide subunits in the assemblies. Altogether, our study contributes to a thorough understanding of the association characteristics and the tendency toward self-assembly in response to lipidation. This is important not only to achieve the desired bioavailability but also with respect to the physical stability of peptide solutions.


Assuntos
Descoberta de Drogas/métodos , Exenatida/química , Exenatida/farmacologia , Ácidos Graxos Voláteis/química , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptores de Glucagon/agonistas , Acilação , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Difusão Dinâmica da Luz , Interações Hidrofóbicas e Hidrofílicas , Lagartos/metabolismo , Espectroscopia de Ressonância Magnética , Peso Molecular , Estrutura Secundária de Proteína
2.
Diabetes Obes Metab ; 22(8): 1328-1338, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32196896

RESUMO

AIMS: To test specific mono-agonists to the glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor (GCGR) and glucose-dependent insulinotropic peptide receptor (GIPR), individually and in combination, in a mouse model of diet-induced non-alcoholic steatohepatitis (NASH) and fibrosis in order to decipher the contribution of their activities and potential additive effects to improving systemic and hepatic metabolism. MATERIALS AND METHODS: We induced NASH by pre-feeding C57BL/6J mice a diet rich in fat, fructose and cholesterol for 36 weeks. This was followed by 8 weeks of treatment with the receptor-specific agonists 1-GCG (20 µg/kg twice daily), 2-GLP1 (3 µg/kg twice daily) or 3-GIP (30 µg/kg twice daily), or the dual (1 + 2) or triple (1 + 2 + 3) combinations thereof. A dual GLP-1R/GCGR agonistic peptide, 4-dual-GLP1/GCGR (30 µg/kg twice daily), and liraglutide (100 µg/kg twice daily) were included as references. RESULTS: Whereas low-dose 1-GCG or 3-GIP alone did not influence body weight, liver lipids and histology, their combination with 2-GLP1 provided additional weight loss, reduction in liver triglycerides and improvement in histological disease activity score. Notably, 4-dual-GLP-1R/GCGR and the triple combination of selective mono-agonists led to a significantly stronger reduction in the histological non-alcoholic fatty liver disease activity score compared to high-dose liraglutide, at the same extent of body weight loss. CONCLUSIONS: GCGR and GIPR agonism provide additional, body weight-independent improvements on top of GLP-1R agonism in a murine model of manifest NASH with fibrosis.


Assuntos
Incretinas , Hepatopatia Gordurosa não Alcoólica , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1 , Incretinas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores de Glucagon
3.
Diabetes Obes Metab ; 21(1): 120-128, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091218

RESUMO

AIMS: To evaluate the safety, pharmacokinetics and pharmacodynamics of SAR425899, a novel polypeptide, active as an agonist at both the glucagon-like peptide-1 receptor (GLP-1R) and the glucagon receptor (GCR), in healthy volunteers and in overweight/obese patients with type 2 diabetes (T2D). METHODS: Subcutaneous administrations of SAR425899 were tested in two randomized, placebo-controlled, double-blind clinical trials. In the first trial, healthy overweight volunteers (body mass index [BMI] 25-30 kg/m2 ; n = 32) received single-ascending doses (0.01-0.1 mg) of SAR425899 or placebo. In the second, a multiple-ascending-dose trial (NCT02411825), healthy normal- to overweight volunteers (BMI 20-30 kg/m2 ; n = 40) and overweight/obese patients with T2D (BMI 28-42 kg/m2 ; n = 36) received daily doses of SAR425899 or placebo over 21 or 28 days, respectively. RESULTS: The most frequently reported adverse events were gastrointestinal; gastrointestinal side effects were less pronounced in patients with T2D compared with healthy volunteers. SAR425899 significantly reduced levels of fasting plasma glucose (P < 0.05 vs. placebo) and glycated haemoglobin (P < 0.001 versus placebo) in patients with T2D. Additionally, SAR425899 led to reductions in body weight, with a maximal reduction of 5.32 kg in healthy volunteers and 5.46 kg in patients with T2D (P < 0.001 vs. placebo) at end of treatment. CONCLUSIONS: SAR425899 was well tolerated and led to favourable glycaemic effects in patients with T2D and weight reduction in both healthy volunteers and patients. Whether dual GLP-1R/GCR agonism represents a treatment method that is superior to pure GLP-1R agonists for obesity and diabetes treatment remains to be confirmed.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes , Receptores de Glucagon/agonistas , Adolescente , Adulto , Glicemia/análise , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Placebos , Adulto Jovem
4.
Diabetes Obes Metab ; 20(8): 1836-1851, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29938884

RESUMO

AIM: We performed acute and chronic studies in healthy and diet-induced obese animals using mouse-specific or monkey-specific dual GLP-1R/GCGR agonists to investigate their effects on food intake, body weight, blood glucose control and insulin secretion. The selective GLP-1R agonist liraglutide was used as comparator. METHODS: The mouse-specific dual agonist and liraglutide were tested in lean wild type, GLP-1R knockout and diet-induced obese mice at different doses. A chronic study was performed in DIO mice to investigate the effect on body weight, food consumption and total energy expenditure (TEE) in obese and diabetic monkeys with a focus on body weight and energy intake. RESULTS: The mouse-specific dual agonist and liraglutide similarly affected glycaemic control. A higher loss in body weight was measured in dual agonist-treated obese mice. The dual agonist significantly enhanced plasma glucose excursion in overnight fed GLP-1R-/- mice, probably reflecting a potent GCGR agonist activity. It increased TEE and enhanced fat and carbohydrate oxidation, while liraglutide produced no effect on TEE. In obese and diabetic monkeys, treatment with the monkey-specific dual agonist reduced total energy intake to 60%-70% of baseline TEI during chronic treatment. A decrease in body weight and significant improvement in glucose tolerance was observed. CONCLUSIONS: In DIO mice and non-human primates, dual agonists elicited robust glycaemic control, similar to the marketed GLP-1R agonist, while eliciting greater effects on body weight. Results from DIO mice suggest that the increase in TEE is caused not only by increased fat oxidation but also by an increase in carbohydrate oxidation.


Assuntos
Depressores do Apetite/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hiperglicemia/prevenção & controle , Hipoglicemiantes/uso terapêutico , Obesidade/tratamento farmacológico , Receptores de Glucagon/agonistas , Animais , Animais não Endogâmicos , Depressores do Apetite/administração & dosagem , Depressores do Apetite/efeitos adversos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Relação Dose-Resposta a Droga , Quimioterapia Combinada/efeitos adversos , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Secreção de Insulina/efeitos dos fármacos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/sangue , Obesidade/etiologia , Obesidade/metabolismo , Distribuição Aleatória , Receptores de Glucagon/metabolismo
5.
Bioorg Med Chem Lett ; 23(16): 4685-91, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23845218

RESUMO

Racemic cis-1,1-dioxo-5,6-dihydro-[4,1,2]oxathiazine derivative 4a was isolated as an impurity in a sample of a hit from a HTS campaign on 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1). After separation by chiral chromatography the 4a-S, 8a-R enantiomer of compound 4a was identified as the true, potent enzyme inhibitor. The cocrystal structure of 4a with human and murine 11ß-HSD1 revealed the unique binding mode of the oxathiazine series. SAR elucidation and optimization in regard to metabolic stability led to monocyclic tetramethyloxathiazines as exemplified by compound 21g.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Diabetes Mellitus/tratamento farmacológico , Inibidores Enzimáticos/síntese química , Modelos Moleculares , Tiazinas/síntese química , Animais , Sítios de Ligação , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Tiazinas/química , Tiazinas/farmacologia
6.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36678558

RESUMO

Imaging and radiotherapy targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) could potentially benefit the management of neuroendocrine neoplasms (NENs), complementing clinically established radiopharmaceuticals. The aim of this study was to evaluate a GIPR-targeting positron emission tomography (PET) radioligand with receptor-specific binding, fast blood clearance, and low liver background uptake. The peptide DOTA-bioconjugate, C803-GIP, was developed based on the sequence of the endogenous GIP(1-30) and synthetic exendin-4 peptides with selective amino acid mutations to combine their specificity for the GIPR and in vivo stability, respectively. The 68Ga-labeled bioconjugate was evaluated in vitro in terms of binding affinity, specificity, and internalization in HEK293 cells transfected with the human GIPR, GLP1, or GCG receptors and in sections of human insulinoma and NENs. In vivo binding specificity, biodistribution, and tissue background were investigated in mice bearing huGIPR-HEK293 xenografts and in a pig. Ex vivo organ distribution, pharmacokinetics, and dosimetry were studied in normal rats. [68Ga]Ga-C803-GIP was stable and demonstrated a high affinity to the huGIPR-HEK293 cells. Binding specificity was demonstrated in vitro in frozen sections of NENs and huGIPR-HEK293 cells. No specific uptake was observed in the negative controls of huGLP1R and huGCGR cells. A novel rationally designed PET radioligand, [68Ga]Ga-C803-GIP, demonstrated promising binding characteristics and specificity towards the GIPR.

7.
J Nucl Med ; 63(5): 794-800, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34503957

RESUMO

The glucagonlike peptide-1 receptor (GLP1R) is a gut hormone receptor, intricately linked to regulation of blood glucose homeostasis via several mechanisms. It is an established and emergent drug target in metabolic disease. The PET radioligand 68Ga-DO3A-VS-exendin4 (68Ga-exendin4) has the potential to enable longitudinal studies of GLP1R in the human pancreas. Methods:68Ga-exendin4 PET/CT examinations were performed on overweight-to-obese individuals with type 2 diabetes (n = 13) as part of a larger target engagement study (NCT03350191). A scanning protocol was developed to optimize reproducibility (target amount of 0.5 MBq/kg [corresponding to peptide amount of <0.2 µg/kg], blood sampling, and tracer stability assessment). The pancreas and abdominal organs were segmented, and binding was correlated with clinical parameters. Results: Uptake of 68Ga-exendin4 in the pancreas, but not in other abdominal tissues, was high but variable between individuals. There was no evidence of self-blocking of GLP1R by the tracer in this protocol, despite the high potency of exendin4. The results showed that a full dynamic scan can be simplified to a short static scan, potentially increasing throughput and reducing patient discomfort. The 68Ga-exendin4 concentration in the pancreas (i.e., GLP1R density) correlated inversely with the age of the individual and tended to correlate positively with body mass index. However, the total GLP1R content in the pancreas did not. Conclusion: In summary, we present an optimized and simplified 68Ga-exendin4 scanning protocol to enable reproducible imaging of GLP1R in the pancreas. 68Ga-exendin4 PET may enable quantification of longitudinal changes in pancreatic GLP1R during the development of type 2 diabetes, as well as target engagement studies of novel glucagonlike peptide-1 agonists.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Radioisótopos de Gálio , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Peptídeos/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes
8.
Diabetes ; 70(4): 842-853, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33547046

RESUMO

Targeting of the glucose-dependent insulinotropic polypeptide receptor (GIPR) is an emerging strategy in antidiabetic drug development. The aim of this study was to develop a positron emission tomography (PET) radioligand for the GIPR to enable the assessment of target distribution and drug target engagement in vivo. The GIPR-selective peptide S02-GIP was radiolabeled with 68Ga. The resulting PET tracer [68Ga]S02-GIP-T4 was evaluated for affinity and specificity to human GIPR (huGIPR). The in vivo GIPR binding of [68Ga]S02-GIP-T4 as well as the occupancy of a drug candidate with GIPR activity were assessed in nonhuman primates (NHPs) by PET. [68Ga]S02-GIP-T4 bound with nanomolar affinity and high selectivity to huGIPR in overexpressing cells. In vivo, pancreatic binding in NHPs could be dose-dependently inhibited by coinjection of unlabeled S02-GIP-T4. Finally, subcutaneous pretreatment with a high dose of a drug candidate with GIPR activity led to a decreased pancreatic binding of [68Ga]S02-GIP-T4, corresponding to a GIPR drug occupancy of almost 90%. [68Ga]S02-GIP-T4 demonstrated a safe dosimetric profile, allowing for repeated studies in humans. In conclusion, [68Ga]S02-GIP-T4 is a novel PET biomarker for safe, noninvasive, and quantitative assessment of GIPR target distribution and drug occupancy.


Assuntos
Polipeptídeo Inibidor Gástrico/metabolismo , Glucose/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores dos Hormônios Gastrointestinais/metabolismo , Animais , Feminino , Humanos , Hipoglicemiantes , Masculino , Radioquímica , Ratos , Transdução de Sinais/fisiologia
9.
J Nucl Med ; 62(6): 833-838, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33097629

RESUMO

Despite the importance of the glucagon receptor (GCGR) in disease and in pharmaceutical drug development, there is a lack of specific and sensitive biomarkers of its activation in humans. The PET radioligand 68Ga-DO3A-VS-Tuna-2 (68Ga-Tuna-2) was developed to yield a noninvasive imaging marker for GCGR target distribution and drug target engagement in humans. Methods: The biodistribution and dosimetry of 68Ga-Tuna-2 was assessed by PET/CT in 13 individuals with type 2 diabetes as part of a clinical study assessing the occupancy of the dual GCGR/glucagon like peptide-1 receptor agonist SAR425899. Binding of 68Ga-Tuna-2 in liver and reference tissues was evaluated and correlated to biometrics (e.g., weight or body mass index) or other biomarkers (e.g., plasma glucagon levels). Results:68Ga-Tuna-2 binding was seen primarily in the liver, which is in line with the strong expression of GCGR on hepatocytes. The kidneys demonstrated high excretion-related retention, whereas all other tissue demonstrated rapid washout. The SUV55 min (SUV during the last 10-min time frame, 50-60 min after administration) uptake endpoint was sensitive to endogenous levels of glucagon. 68Ga-Tuna-2 exhibited a safe dosimetry profile and no adverse events after intravenous administration. Conclusion:68Ga-Tuna-2 can be used for safe and accurate assessment of the GCGR in human. It may serve as an important tool in understanding the in vivo pharmacology of novel drugs engaging the GCGR.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/metabolismo , Receptores de Glucagon/metabolismo , Adulto , Peso Corporal , Feminino , Radioisótopos de Gálio , Humanos , Rim/metabolismo , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiometria , Distribuição Tecidual
10.
Sci Rep ; 10(1): 16758, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028880

RESUMO

Unimolecular dual agonists for the glucagon-like peptide 1 receptor (GLP1R) and glucagon receptor (GCGR) are emerging as a potential new class of important therapeutics in type 2 diabetes (T2D). Reliable and quantitative assessments of in vivo occupancy on each receptor would improve the understanding of the efficacy of this class of drugs. In this study we investigated the target occupancy of the dual agonist SAR425899 at the GLP1R in pancreas and GCGR in liver by Positron Emission Tomography/Computed Tomography (PET/CT). Patients with T2D were examined by [68Ga]Ga-DO3A-Tuna-2 and [68Ga]Ga-DO3A-Exendin4 by PET, to assess the GCGR in liver and GLP1R in pancreas, respectively. Follow up PET examinations were performed after 17 (GCGR) and 20 (GLP-1R) days of treatment with SAR425899, to assess the occupancy at each receptor. Six out of 13 included patients prematurely discontinued the study due to adverse events. SAR425899 at a dose of 0.2 mg daily demonstrated an average GCGR occupancy of 11.2 ± 14.4% (SD) in N = 5 patients and a GLP1R occupancy of 49.9 ± 13.3%. Fasting Plasma Glucose levels (- 3.30 ± 1.14 mmol/L) and body weight (- 3.87 ± 0.87%) were lowered under treatment with SAR425899. In conclusion, SAR425899 demonstrated strong interactions at the GLP1R, but no clear occupancy at the GCGR. The study demonstrates that quantitative target engagement of dual agonists can be assessed by PET.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Receptores de Glucagon/agonistas , Idoso , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
11.
Pharmaceuticals (Basel) ; 13(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752075

RESUMO

Introduction: [68Ga]Ga-DO3A-VS-Cys40-Tuna-2 (previously published as [68Ga]Ga-DO3A-VS-Cys40-S01-GCG) has shown high-affinity specific binding to the glucagon receptor (GCGR) in vitro and in vivo in rats and non-human primates in our previous studies, confirming the suitability of the tracer for drug development applications in humans. The manufacturing process of [68Ga]Ga-DO3A-VS-Cys40-Tuna-2 was automated for clinical use to meet the radiation safety and good manufacturing practice (GMP) requirements. Methods: The automated synthesis platform (Modular-Lab PharmTrace, Eckert & Ziegler, Eurotope, Germany), disposable cassettes for 68Ga-labeling, and pharmaceutical-grade 68Ge/68Ga generator (GalliaPharm®) used in the study were purchased from Eckert & Ziegler. The parameters such as time, temperature, precursor concentration, radical scavenger, buffer concentration, and pH, as well as product purification step, were investigated and optimized. Process optimization was conducted with regard to product quality and quantity, as well as process reproducibility. The active pharmaceutical ingredient starting material DO3A-VS-Cys40-Tuna-2 (GMP-grade) was provided by Sanofi Aventis. Results: The reproducible and GMP-compliant automated production of [68Ga]Ga-DO3A-VS-Cys40-Tuna-2 with on-line documentation was developed. The non-decay-corrected radiochemical yield was 45.2 ± 2.5% (n = 3, process validation) at the end of the synthesis with a labeling synthesis duration of 38 min and a quality controlincluding release procedure of 20 min. The radiochemical purity of the product was 98.9 ± 0.6% (n = 17) with the total amount of the peptide in the preparation of 48 ± 2 µg (n = 3, process validation). Radionuclidic purity, sterility, endotoxin content, residual solvent content, and sterile filter integrity tests met the acceptance criteria. The product was stable at ambient temperature for at least 2 h. Conclusion: The fully automated GMP-compliant manufacturing process was developed and thoroughly validated. The resulting [68Ga]Ga-DO3A-VS-Cys40-Tuna-2 was used in a clinical study for accurate quantification of GCGR occupancy by a dual anti-diabetic drug in vivo in humans.

12.
Tetrahedron Lett ; 50(47): 6494-9497, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20161410

RESUMO

A library of 72 quinolones was synthesized from substituted anthranilic acids, using ynone intermediates. These masked ß-dicarbonyl synthons allowed cyclization under milder conditions than previously reported quinolone syntheses.

13.
EJNMMI Res ; 9(1): 17, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771019

RESUMO

The glucagon receptor (GCGR) is emerging as an important target in anti-diabetic therapy, especially as part of the pharmacology of dual glucagon-like peptide-1/glucagon (GLP-1/GCG) receptor agonists. However, currently, there are no suitable biomarkers that reliably demonstrate GCG receptor target engagement. METHODS: Two potent GCG receptor peptide agonists, S01-GCG and S02-GCG, were labeled with positron emission tomography (PET) radionuclide gallium-68. The GCG receptor binding affinity and specificity of the resulting radiopharmaceuticals [68Ga]Ga-DO3A-S01-GCG and [68Ga]Ga-DO3A-S02-GCG were evaluated in HEK-293 cells overexpressing the human GCG receptor and on frozen hepatic sections from human, non-human primate, and rat. In in vivo biodistribution, binding specificity and dosimetry were assessed in rat. RESULTS: [68Ga]Ga-DO3A-S01-GCG in particular demonstrated GCG receptor-mediated binding in cells and liver tissue with affinity in the nanomolar range required for imaging. [68Ga]Ga-DO3A-S01-GCG binding was not blocked by co-incubation of a GLP-1 agonist. In vivo binding in rat liver was GCG receptor specific with low non-specific binding throughout the body. Moreover, the extrapolated human effective doses, predicted from rat biodistribution data, allow for repeated PET imaging potentially also in combination with GLP-1R radiopharmaceuticals. CONCLUSION: [68Ga]Ga-DO3A-S01-GCG thus constitutes a first-in-class PET tracer targeting the GCG receptor, with suitable properties for clinical development. This tool has potential to provide direct quantitative evidence of GCG receptor occupancy in humans.

14.
Sci Rep ; 9(1): 14960, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628379

RESUMO

The glucagon receptor (GCGR) is an emerging target in anti-diabetic therapy. Reliable biomarkers for in vivo activity on the GCGR, in the setting of dual glucagon-like peptide 1/glucagon (GLP-1/GCG) receptor agonism, are currently unavailable. Here, we investigated [68Ga]Ga-DO3A-S01-GCG as a biomarker for GCGR occupancy in liver, the tissue with highest GCGR expression, in non-human primates (NHP) by PET. [68Ga]Ga-DO3A-S01-GCG was evaluated by dynamic PET in NHPs by a dose escalation study design, where up to 67 µg/kg DO3A-S01-GCG peptide mass was co-injected. The test-retest reproducibility of [68Ga]Ga-DO3A-S01-GCG binding in liver was evaluated. Furthermore, we investigated the effect of pre-treatment with acylated glucagon agonist 1-GCG on [68Ga]Ga-DO3A-S01-GCG binding in liver. [68Ga]Ga-DO3A-S01-GCG bound to liver in vivo in a dose-dependent manner. Negligible peptide mass effect was observed for DO3A-S01-GCG doses <0.2 µg/kg. In vivo Kd for [68Ga]Ga-DO3A-S01-GCG corresponded to 0.7 µg/kg, which indicates high potency. The test-retest reproducibility for [68Ga]Ga-DO3A-S01-GCG binding in liver was 5.7 ± 7.9%. Pre-treatment with 1-GCG, an acylated glucagon agonist, resulted in a GCGR occupancy of 61.5 ± 9.1% in liver. Predicted human radiation dosimetry would allow for repeated annual [68Ga]Ga-DO3A-S01-GCG PET examinations. In summary, PET radioligand [68Ga]Ga-DO3A-S01-GCG is a quantitative biomarker of in vivo GCGR occupancy.


Assuntos
Biomarcadores/metabolismo , Receptores de Glucagon/metabolismo , Animais , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Ligantes , Fígado/diagnóstico por imagem , Fígado/metabolismo , Macaca fascicularis , Masculino , Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ligação Proteica , Radiometria , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Baço/diagnóstico por imagem
15.
Endocrinology ; 159(8): 3105-3119, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992313

RESUMO

We assessed the therapeutic contribution of the individual components of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) agonists alone and in combination upon energy homeostasis and glycemic control in diet-induced obese, diabetic nonhuman primates. The pharmacological active dose ranges of selective agonists were established through a dose-finding study, followed by a 6-week chronic study. Repeated subcutaneous administration of a selective GCGR agonist (30 µg/kg once daily) did not affect food intake or body weight, whereas the selective GLP-1R agonist (3 µg/kg once daily) alone decreased energy intake by 18% and body weight by 3.8% ± 0.9%. Combination of both agonists reduced significantly cumulative food intake by 27% and body weight by 6.6% ± 0.9%. Fasting plasma glucose (FPG) was improved by GLP-1R agonist (baseline vs end of study, 176.7 ± 34.0 vs 115.9 ± 16.1 mg/dL). In contrast, groups exposed to GCGR agonist experienced nonsignificant elevations of FPG. More accurate assessment of therapeutic interventions on glucose homeostasis was tested by an IV glucose tolerance test. Glucose excursion was significantly elevated by chronic GCGR agonist administration, whereas it was significantly decreased in GLP-1R agonist-treated monkeys. In the combination group, a nonsignificant increase of glucose excursion was seen, concomitantly with significantly increased insulin secretion. We conclude that chronic glucagon agonism does not affect energy homeostasis in nonhuman primates. In combination with GLP-1R agonism, glucagon agonism synergistically enhances negative energy balance with resulting larger body weight loss. However, adding GCGR to GLP-1R agonism diminishes glycemic control in diabetic monkeys. Therefore, long-term therapeutic implications of using GLP-1R/GCGR coagonists for weight management in diabetes warrants further scrutiny.


Assuntos
Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Obesidade/metabolismo , Receptores de Glucagon/agonistas , Animais , Cirurgia Bariátrica , Glicemia/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Quimioterapia Combinada , Metabolismo Energético/efeitos dos fármacos , Macaca fascicularis , Camundongos , Obesidade/cirurgia
16.
J Med Chem ; 61(13): 5580-5593, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29879354

RESUMO

Novel peptidic dual agonists of the glucagon-like peptide 1 (GLP-1) and glucagon receptor are reported to have enhanced efficacy over pure GLP-1 receptor agonists with regard to treatment of obesity and diabetes. We describe novel exendin-4 based dual agonists designed with an activity ratio favoring the GLP-1 versus the glucagon receptor. As result of an iterative optimization procedure that included molecular modeling, structural biological studies (X-ray, NMR), peptide design and synthesis, experimental activity, and solubility profiling, a candidate molecule was identified. Novel SAR points are reported that allowed us to fine-tune the desired receptor activity ratio and increased solubility in the presence of antimicrobial preservatives, findings that can be of general applicability for any peptide discovery project. The peptide was evaluated in chronic in vivo studies in obese diabetic monkeys as translational model for the human situation and demonstrated favorable blood glucose and body weight lowering effects.


Assuntos
Descoberta de Drogas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptores de Glucagon/agonistas , Relação Dose-Resposta a Droga , Composição de Medicamentos , Espaço Extracelular/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Células HEK293 , Humanos , Modelos Moleculares , Domínios Proteicos , Receptores de Glucagon/química , Solubilidade , Relação Estrutura-Atividade
17.
J Med Chem ; 60(10): 4293-4303, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28448133

RESUMO

Dual activation of the glucagon-like peptide 1 (GLP-1) and glucagon receptor has the potential to lead to a novel therapy principle for the treatment of diabesity. Here, we report a series of novel peptides with dual activity on these receptors that were discovered by rational design. On the basis of sequence analysis and structure-based design, structural elements of glucagon were engineered into the selective GLP-1 receptor agonist exendin-4, resulting in hybrid peptides with potent dual GLP-1/glucagon receptor activity. Detailed structure-activity relationship data are shown. Further modifications with unnatural and modified amino acids resulted in novel metabolically stable peptides that demonstrated a significant dose-dependent decrease in blood glucose in chronic studies in diabetic db/db mice and reduced body weight in diet-induced obese (DIO) mice. Structural analysis by NMR spectroscopy confirmed that the peptides maintain an exendin-4-like structure with its characteristic tryptophan-cage fold motif that is responsible for favorable chemical and physical stability.


Assuntos
Desenho de Fármacos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeos/química , Peptídeos/farmacologia , Peçonhas/química , Peçonhas/farmacologia , Sequência de Aminoácidos , Animais , Glicemia/análise , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Exenatida , Feminino , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/sangue , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Peptídeos/sangue , Relação Estrutura-Atividade , Suínos , Peçonhas/sangue
18.
Comb Chem High Throughput Screen ; 9(9): 663-81, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17100572

RESUMO

A synthetic reexamination of a series of ketodihydronicotinic acid class antibacterial agents was undertaken in an attempt to improve their therapeutic potential. A convenient new synthesis was developed involving hetero Diels-Alder chemistry producing 74 new analogs in a multiple parallel synthetic manner and these were examined in vitro for their antimicrobial potential. Several compounds demonstrated significant broad-spectrum activity against clinically derived bacterial strains but previously known 1-(2,4-difluorophenyl)-6-(4-dimethylaminophenyl)-4-pyridone-3-carboxylic acid (7) remained the most potent compound in this class. Cross-resistance with ciprofloxacin supported a commonality of mode of action. Permiabilization of Escherichia coli cells by polymyxin B significantly enhanced potency with these agents suggesting that poor cellular uptake was primarily responsible for the disappointing activity against bacteria that some of the analogs exhibited.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Ácidos Nicotínicos/síntese química , Ácidos Nicotínicos/farmacologia , Piridonas/síntese química , Piridonas/farmacologia , Anti-Infecciosos/química , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Ácidos Nicotínicos/química , Piridonas/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Adv Drug Deliv Rev ; 106(Pt B): 196-222, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-26964477

RESUMO

While some orally delivered diabetes peptides are moving to late development with standard formulations incorporating functional excipients, the demonstration of the value of nanotechnology in clinic is still at an early stage. The goal of this review is to compare these two drug delivery approaches from a physico-chemical and a biopharmaceutical standpoint in an attempt to define how nanotechnology-based products can be differentiated from standard oral dosage forms for oral bioavailability of diabetes peptides. Points to consider in a translational approach are outlined to seize the opportunities offered by a better understanding of both the intestinal barrier and of nano-carriers designed for oral delivery.


Assuntos
Diabetes Mellitus/metabolismo , Sistemas de Liberação de Medicamentos , Excipientes/química , Nanomedicina , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Pesquisa Translacional Biomédica , Administração Oral , Animais , Excipientes/administração & dosagem , Excipientes/farmacocinética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA