Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Headache ; 64(6): 652-662, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700141

RESUMO

OBJECTIVE: Migraine, a prevalent and debilitating disease, involves complex pathophysiology possibly including inflammation and heightened pain sensitivity. The current study utilized the complete Freund's adjuvant (CFA) model of inflammation, with onabotulinumtoxinA (BoNT/A) as a treatment of interest due to its use in clinical migraine management. Using an animal model, the study sought to investigate the role of BoNT/A in modulating CFA-induced inflammation, alterations in pain sensitivity, and the regulation of calcitonin gene-related peptide (CGRP) release. Further, we aimed to assess the changes in SNAP-25 through western blot analysis to gain insights into the mechanistic action of BoNT/A. METHODS: BoNT/A or control was administered subcutaneously at the periorbital region of rats 3 days before the induction of inflammation using CFA. Periorbital mechanical sensitivity was assessed post-inflammation, and alterations in CGRP release were evaluated. Changes in SNAP-25 levels were determined using western blot analysis. RESULTS: Upon CFA-induced inflammation, there was a marked increase in periorbital mechanical sensitivity, with the inflammation side showing increased sensitivity compared to other periorbital areas. BoNT/A did decrease the withdrawal thresholds in the electronic von Frey test. Despite not being able to observe differences in pain thresholds or CGRP release, BoNT/A reduced baseline release under CFA inflamed conditions. Analysis of SNAP-25 levels in the trigeminal ganglion revealed both intact and cleaved forms that were notably elevated in BoNT/A-treated animals. These findings, derived from western blot analysis, suggest an effect on neurotransmitter release. CONCLUSION: Our investigation highlights the role of BoNT/A in reducing baseline CGRP in the context of inflammation and its involvement in SNAP-25 cleavage. In contrast, BoNT/A did not appear to alter facial pain sensitivity induced by inflammation, suggesting that mechanisms other than baseline CGRP could be implicated in the elevated thresholds in the CFA model.


Assuntos
Toxinas Botulínicas Tipo A , Peptídeo Relacionado com Gene de Calcitonina , Modelos Animais de Doenças , Inflamação , Transtornos de Enxaqueca , Ratos Sprague-Dawley , Proteína 25 Associada a Sinaptossoma , Animais , Toxinas Botulínicas Tipo A/farmacologia , Toxinas Botulínicas Tipo A/administração & dosagem , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Inflamação/tratamento farmacológico , Ratos , Masculino , Adjuvante de Freund , Dor/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Fármacos Neuromusculares/farmacologia , Fármacos Neuromusculares/administração & dosagem
2.
J Cardiovasc Pharmacol ; 79(1): e122-e128, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34654785

RESUMO

ABSTRACT: Effects of sex hormones on stroke outcome are not fully understood. A deleterious consequence of cerebral ischemia is upregulation of vasoconstrictor receptors in cerebral arteries that exacerbate stroke injury. Here, we tested the hypothesis that female sex hormones alter vasocontractile responses after experimental stroke in vivo or after organ culture in vitro, a model of vasocontractile receptor upregulation. Female rats with intact ovaries and ovariectomized (OVX) females treated with 17ß-estradiol, progesterone, or placebo were subjected to transient, unilateral middle cerebral artery occlusion followed by reperfusion (I/R). The maximum contractile response, measured my wire myography, in response to the endothelin B receptor agonist sarafotoxin 6c was increased in female arteries after I/R, but the maximum response was significantly lower in arteries from OVX females. Maximum contraction mediated by the serotonin agonist 5-carboxamidotryptamine was diminished after I/R, with arteries from OVX females showing a greater decrease in maximum contractile response. Contraction elicited by angiotensin II was similar in all arteries. Neither estrogen nor progesterone treatment of OVX females affected I/R-induced changes in endothelin B- and 5-carboxamidotryptamine-induced vasocontraction. These findings suggest that sex hormones do not directly influence vasocontractile alterations that occur after ischemic stroke; however, loss of ovarian function does impact this process.


Assuntos
Infarto da Artéria Cerebral Média/fisiopatologia , Artéria Cerebral Média/fisiopatologia , Ovariectomia , Ovário/fisiopatologia , Vasoconstrição , Animais , Modelos Animais de Doenças , Estradiol/farmacologia , Terapia de Reposição de Estrogênios , Feminino , Infarto da Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/metabolismo , Técnicas de Cultura de Órgãos , Ovário/metabolismo , Progesterona/farmacologia , Ratos Sprague-Dawley , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
3.
J Headache Pain ; 23(1): 30, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189809

RESUMO

BACKGROUND: Based on the current understanding of the role of neuropeptide signalling in migraine, we explored the therapeutic potential of a specific cannabinoid agonist. The aim of the present study was to examine the effect of the synthetic endocannabinoid (eCB) analogue, arachidonyl-2'-chloroethylamide (ACEA), on calcitonin gene-related peptide (CGRP) release in the dura and trigeminal ganglion (TG), as cannabinoids are known to activate Gi/o-coupled cannabinoid receptors type 1 (CB1), resulting in neuronal inhibition. METHODS: The experiments were performed using the hemi-skull model and dissected TGs from male Sprague-Dawley rats. CGRP release was induced by either 60 mM K+ (for depolarization-induced stimulation) or 100 nM capsaicin (for transient receptor potential vanilloid 1 (TRPV1) -induced stimulation) and measured using an enzyme-linked immunosorbent assay. The analysis of CGRP release data was combined with immunohistochemistry in order to study the cellular localization of CB1, cannabinoid receptor type 2 (CB2), CGRP and receptor activity modifying protein 1 (RAMP1), a subunit of the functional CGRP receptor, in the TG. RESULTS: CB1 was predominantly expressed in neuronal somas in which colocalization with CGRP was observed. Furthermore, CB1 exhibited colocalization with RAMP1 in neuronal Aδ-fibres but was not clearly expressed in the CGRP-immunoreactive C-fibres. CB2 was mainly expressed in satellite glial cells and did not show substantial colocalization with either CGRP or RAMP1. Without stimulation, 140 nM ACEA per se caused a significant increase in CGRP release in the dura but not TG, compared to vehicle. Furthermore, 140 nM ACEA did not significantly modify neither K+- nor capsaicin-induced CGRP release. However, when the TRPV1 blocker AMG9810 (1 mM) was coapplied with ACEA, K+-induced CGRP release was significantly attenuated in the TG and dura. CONCLUSIONS: Results from the present study indicate that ACEA per se does not exhibit antimigraine potential due to its dual agonistic properties, resulting in activation of both CB1 and TRPV1, and thereby inhibition and stimulation of CGRP release, respectively.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Animais , Ácidos Araquidônicos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Ligantes , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Canabinoides
4.
Microvasc Res ; 135: 104127, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33359306

RESUMO

OBJECTIVE: Early brain injury (EBI) and delayed cerebral ischemia (DCI) after subarachnoid haemorrhage (SAH) has devastating consequences but therapeutic options and the underlying pathogenesis remain poorly understood despite extensive preclinical and clinical research. One of the drawbacks of most preclinical studies to date is that the mechanisms behind DCI after SAH are studied only in male animals. In this study we therefore established a female rat model of SAH in order to determine subacute pathophysiological changes that may contribute to DCI in females. METHODS: Experimental SAH was induced in female rats by intracisternal injection of 300 µL of autologous blood. Sham operation served as a control. Neurological deficits and intracranial pressure measurements were evaluated at both 1 and 2 days after surgery. Additionally, changes in cerebral vascular contractility were evaluated 2 days after surgery using wire myography. RESULTS: SAH in female rats resulted in sensorimotor deficits and decreased general wellbeing on both day 1 and day 2 after SAH. Intracranial pressure uniformly increased in all rats subjected to SAH on day 1. On day 2 the intracranial pressure had increased further, decreased slightly or remained at the level seen on day 1. Furthermore, female rats subjected to SAH developed cortical brain edema. Cerebral arteries, isolated 2 days after SAH, exhibited increased vascular contractions to endothelin-1 and 5-carboxamidotryptamine. CONCLUSION: In the subacute phase after SAH in female rats, we observed increased intracranial pressure, decreased wellbeing, sensorimotor deficits, increased vascular contractility and cortical brain edema. Collectively, these pathophysiological changes may contribute to DCI after SAH in females. Previous studies reported similar pathophysiological changes for male rats in the subacute phase after SAH. Thus, prevention of these gender-independent mechanisms may provide the basis for a universal treatment strategy for DCI after SAH. Nevertheless, preclinical studies of potential therapies should employ both male and female SAH models.


Assuntos
Isquemia Encefálica/fisiopatologia , Artérias Cerebrais/fisiopatologia , Circulação Cerebrovascular , Hipertensão Intracraniana/fisiopatologia , Pressão Intracraniana , Atividade Motora , Sensação , Hemorragia Subaracnóidea/fisiopatologia , Vasoconstrição , Animais , Edema Encefálico/etiologia , Edema Encefálico/fisiopatologia , Isquemia Encefálica/etiologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Hipertensão Intracraniana/etiologia , Masculino , Ratos Sprague-Dawley , Fatores Sexuais , Hemorragia Subaracnóidea/complicações , Fatores de Tempo
5.
Cephalalgia ; 40(12): 1296-1309, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32486909

RESUMO

BACKGROUND: Several neurotransmitters are expressed in the neurons of the trigeminal ganglion. One such signalling molecule is the pituitary adenylate cyclase-activating peptide (PACAP). PACAP signalling has been suggested to have a possible role in the pathophysiology of primary headaches. OBJECTIVE: The present study was designed to investigate the relationship between PACAP and calcitonin gene-related peptide, currently the two most relevant migraine peptides. METHODS: In the current study, we used ELISA to investigate PACAP and calcitonin gene-related peptide release in response to 60 mM K+ or capsaicin using a rat hemi-skull model. We combined this analysis with qPCR and immunohistochemistry to study the expression of PACAP and calcitonin gene-related peptide receptors and ligands. RESULTS: Calcitonin gene-related peptide (CGRP) is released from the trigeminal ganglion and dura mater. In contrast, PACAP is only released from the trigeminal ganglion. We observed a weak correlation between the stimulated release of the two neuropeptides. PACAP-38 immunoreactivity was expressed alone and in a subpopulation of neurons in the trigeminal ganglion that also store calcitonin gene-related peptide. The receptor subtype PAC1 was mainly expressed in the satellite glial cells (SGCs), which envelop the neurons in the trigeminal ganglion, in some neuronal processes, inside the Aδ-fibres and in the outermost layer of the myelin sheath that envelopes the Aδ-fibres. CONCLUSION: Unlike CGRP, PACAP is only released within the trigeminal ganglion. This raises the question of whether a migraine therapy aimed at preventing peripheral PACAP signalling would be as successful as the CGRP signalling targeted treatments.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dura-Máter/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Masculino , Transtornos de Enxaqueca/fisiopatologia , Ratos , Ratos Sprague-Dawley
6.
Purinergic Signal ; 16(1): 73-84, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32067141

RESUMO

ATP is a cotransmitter released with other neurotransmitters from sympathetic nerves, where it stimulates purinergic receptors. Purinergic adenosine P1 receptors (coupled to Gi/o proteins) produce sympatho-inhibition in several autonomic effectors by prejunctional inhibition of neurotransmitter release. Similarly, signalling through P2Y12 and P2Y13 receptors coupled to Gi/o proteins is initiated by the ATP breakdown product ADP. Hence, this study has pharmacologically investigated a possible role of ADP-induced inhibition of the cardioaccelerator sympathetic drive in pithed rats, using a stable ADP analogue (ADPßS) and selective antagonists for the purinergic P2Y1, P2Y12 and P2Y13 receptors. Accordingly, male Wistar rats were pithed and: (i) pretreated i.v. with gallamine (25 mg/kg) and desipramine (50 µg/kg) for preganglionic spinal (C7-T1) stimulation of the cardioaccelerator sympathetic drive (n = 78); or (ii) prepared for receiving i.v. injections of exogenous noradrenaline (n = 12). The i.v. continuous infusions of ADPßS (10 and 30 µg/kg/min) dose-dependently inhibited the tachycardic responses to electrical sympathetic stimulation, but not those to exogenous noradrenaline. The cardiac sympatho-inhibition produced by 30 µg/kg/min ADPßS was (after i.v. administration of compounds) (i) unchanged by 1-ml/kg bidistilled water or 300-µg/kg MRS 2500 (P2Y1 receptor antagonist), (ii) abolished by 300-µg/kg PSB 0739 (P2Y12 receptor antagonist) and (iii) partially blocked by 3000-µg/kg MRS 2211 (P2Y13 receptor antagonist). Our results suggest that ADPßS induces a cardiac sympatho-inhibition that mainly involves the P2Y12 receptor subtype and, probably to a lesser extent, the P2Y13 receptor subtype. These receptors may represent therapeutic targets for treating cardiovascular pathologies, including stroke and myocardial infarctions.


Assuntos
Difosfato de Adenosina/análogos & derivados , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Receptores Purinérgicos P2Y12/metabolismo , Receptores Purinérgicos P2/metabolismo , Sistema Nervoso Simpático/fisiologia , Tionucleotídeos/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Masculino , Ratos , Ratos Wistar , Sistema Nervoso Simpático/efeitos dos fármacos
7.
Exp Eye Res ; 179: 142-149, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30439349

RESUMO

Retinal ischemia remains a major cause of blindness in the world with few acute treatments available. Recent emphasis on retinal vasculature and the ophthalmic artery's vascular properties after ischemia has shown an increase in vasoconstrictive functionality, as previously observed in cerebral arteries following stroke. Specifically, endothelin-1 (ET-1) receptor-mediated vasoconstriction regulated by the MEK/ERK1/2 pathway. In this study, the ophthalmic artery of rats was occluded for 2 h with the middle cerebral artery occlusion model. MEK/ERK1/2 inhibitor U0126 was administered at 0, 6, and 24 h following reperfusion and the functional properties of the ophthalmic artery were evaluated at 48 h post reperfusion. Additionally, retinal function was evaluated at day 1, 4, and 7 after reperfusion. Occlusion of the ophthalmic artery led to a significant increase of endothelin-1 mediated vasoconstriction which can be attenuated by U0126 treatment, most evident at higher ET-1 concentrations of 10-7 M (Emax151.0 ±â€¯22.0% of 60 mM K+), vs non-treated ischemic arteries Emax 212.1 ±â€¯14.7% of 60 mM K+). Retinal function also deteriorated following ischemia and was improved with treatment with a-wave amplitudes of 725 ± 36 µV in control, 560 ± 21 µV in non-treated, and 668 ± 73 µV in U0126 treated at 2 log cd*s/m2 luminance in the acute stages (1 days post-ischemia). Full spontaneous retinal recovery was observed at day 7 regardless of treatment. In conclusion, this is the first study to show a beneficial in vivo effect of U0126 on vascular contractility following ischemia in the ophthalmic artery. Coupled with the knowledge obtained from cerebral vasculature, these results point towards a novel therapeutic approach following ischemia-related injuries to the eye.


Assuntos
Infarto da Artéria Cerebral Média/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Artéria Oftálmica/fisiopatologia , Retina/fisiopatologia , Animais , Butadienos/farmacologia , Eletrorretinografia , Inibidores Enzimáticos/farmacologia , Imuno-Histoquímica , Isquemia/fisiopatologia , Masculino , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Músculo Liso Vascular/fisiologia , Miografia , Nitrilas/farmacologia , Ratos , Ratos Wistar , Vasoconstrição/fisiologia
8.
J Cardiovasc Pharmacol ; 74(5): 409-419, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425342

RESUMO

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with a high short-term mortality rate which leads to cognitive impairments that reduce the quality of life of the majority of patients. The miRNA-143/145 cluster is highly expressed in vascular smooth muscle cells (VSMC) and has been shown to be necessary for differentiation and function, as well as an important determinant for phenotypic modulation/switching of VSMCs in response to vascular injury. We aimed to determine whether miRNA-143 and miRNA-145 are important regulators of phenotypical changes of VSMCs in relation to SAH, as well as establishing their physiological role in the cerebral vasculature. We applied quantitative PCR to study ischemia-induced alterations in the expression of miRNA-143 and miRNA-145, for rat cerebral vasculature, in an ex vivo organ culture model and an in vivo SAH model. To determine the physiological importance, we did myograph studies on basilar and femoral arteries from miRNA-143/145 knockout mice. miRNA-143 and miRNA-145 are not upregulated in the vasculature following our SAH model, despite the upregulation of miR-145 in the organ culture model. Regarding physiological function, miRNA-143 and miRNA-145 are very important for general contractility in cerebral vessels in response to depolarization, angiotensin II, and endothelin-1. Applying an anti-miRNA targeting approach in SAH does not seem to be a feasible approach because miRNA-143 and miRNA-145 are not upregulated following SAH. The knockout mouse data suggest that targeting miRNA-143 and miRNA-145 would lead to a general reduced contractility of the cerebral vasculature and unwanted dedifferentiation of VSMCs.


Assuntos
MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Hemorragia Subaracnóidea/metabolismo , Vasoconstrição , Animais , Artéria Basilar/metabolismo , Artéria Basilar/fisiopatologia , Desdiferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Camundongos Knockout , MicroRNAs/genética , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Técnicas de Cultura de Órgãos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/fisiopatologia
9.
Scand Cardiovasc J ; 52(6): 340-343, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30481075

RESUMO

OBJECTIVES: The purinergic system has not been investigated in detail following ischemia/reperfusion (I/R) injury in the heart. In the present study, we focus on both release and response to extracellular adenosine triphosphate (ATP). Pannexin (Panx) channels have been shown to be involved in ATP release from myocytes and can activate P2X1 and P2Y2 receptors on the coronary artery. DESIGN: We applied a well-characterized I/R model in rats, with 24 hours of reperfusion. Panx expression in the myocardial tissue was measured with quantitative polymerase chain reaction (qPCR) and flow cytometry. ATP release was detected in situ using luminescence and the vascular response to nucleotides determined in a wire myograph. RESULTS: Here, we show that Panx expression is increased after experimental myocardial I/R, leading to an increase in extracellular ATP release, which could be inhibited by probenecid. Functional studies revealed that the P2Y2 receptor-dependent contraction is reduced in the coronary artery after I/R, which might be a response to the increased ATP levels. CONCLUSION: We, therefore, conclude that the regulation of the arterial purinergic system minimizes coronary contractions following ischemia.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/metabolismo , Vasos Coronários/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vasoconstrição , Animais , Conexinas/genética , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Proteínas do Tecido Nervoso/genética , Comunicação Parácrina , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais
10.
Nitric Oxide ; 70: 68-75, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28919322

RESUMO

BACKGROUND: Blockage of a coronary artery, usually caused by arteriosclerosis, can lead to life threatening acute myocardial infarction. Opening with PCI (percutaneous coronary intervention), may be lifesaving, but reperfusion might exacerbate the cellular damage, and changes in the endothelium are believed to be involved in this worsened outcome. AIM: The aim of the present study was to compare endothelial dependent and independent vasodilatory effect after experimental myocardial ischemia/reperfusion (I/R). METHODS: A well-established rat model of myocardial ischemia with 24 h of reperfusion was applied, followed by a study in a wire myograph. RESULTS: Endothelial NO dependent relaxation in response to carbachol, was sensitive to arterial depolarization, and was unaffected by I/R. In contrast, endothelial NO dependent ADPßS signalling, which was not sensitive to arterial depolarization, was significantly reduced after I/R. Following I/R, an H2O2 dependent EDH induced dilation appears in response to both of the above agonists. In addition, calcitonin gene-related peptide (CGRP) induced vasodilation was reduced. CONCLUSION: These data show that NO dependent ADPßS induced dilation is reduced after I/R. However, there is some compensation by released H2O2 causing an EDH. Combined with a loss of maximal dilation in response to CGRP, the reduced vasodilation could be an important factor in understanding the exacerbated damage after I/R.


Assuntos
Coração/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Vasodilatação/fisiologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carbacol/farmacologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Agonistas do Receptor Purinérgico P2Y/farmacologia , Ratos Sprague-Dawley , Tionucleotídeos/farmacologia , Vasodilatação/efeitos dos fármacos
11.
J Mol Cell Cardiol ; 93: 1-11, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26827897

RESUMO

Extracellular pyrimidines activate P2Y receptors on both smooth muscle cells and endothelial cells, leading to vasoconstriction and relaxation respectively. The aim of this study was to utilize P2Y knock-out (KO) mice to determine which P2Y receptor subtype are responsible for the contraction and relaxation in the coronary circulation and to establish whether P2Y receptors have different functions along the mouse coronary vascular tree. We tested stable pyrimidine analogues on isolated coronary arteries from P2Y2 and P2Y6 receptor KO mice in a myograph setup. In larger diameter segments of the left descending coronary artery (LAD) (lumen diameter~150µm) P2Y6 is the predominant contractile receptor for both UTP (uridine triphosphate) and UDP (uridine diphosphate) induced contraction. In contrast, P2Y2 receptors mediate endothelial-dependent relaxation. However, in smaller diameter LAD segments (lumen diameter~50µm), the situation is opposite, with P2Y2 being the contractile receptor and P2Y6 functioning as a relaxant receptor along with P2Y2. Immunohistochemistry was used to confirm smooth muscle and endothelial localization of the receptors. In vivo measurements of blood pressure in WT mice revealed a biphasic response to the stable analogue UDPßS. Based on the changes in P2Y receptor functionality along the mouse coronary arterial vasculature, we propose that UTP can act as a vasodilator downstream of its release, after being degraded to UDP, without affecting the contractile pyrimidine receptors. We also propose a model, showing physiological relevance for the changes in purinergic receptor functionality along the mouse coronary vascular tree.


Assuntos
Vasos Coronários/metabolismo , Pirimidinas/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Endotélio/metabolismo , Feminino , Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Miócitos de Músculo Liso/fisiologia , Pirimidinas/farmacologia , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y2/genética , Difosfato de Uridina/metabolismo , Difosfato de Uridina/farmacologia , Vasoconstrição/efeitos dos fármacos
12.
Nicotine Tob Res ; 18(5): 642-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26508395

RESUMO

INTRODUCTION: Cigarette smoking is a well-known risk factor for developing cardiovascular diseases, but the underlying mechanisms are largely unknown. Recent data suggest that vasocontractile receptor modulation could be an important factor. Surfactant protein D (SP-D) is important in the particle clearance in the lungs and knock-out (KO) mice for this protein develop emphysema. SP-D is also weakly expressed in the vasculature. We aimed to investigate whether SP-D was important in the cardiovascular response to cigarette smoke exposure (CSE), by utilizing SP-D KO mice and a myograph setup. METHODS: Wild type (WT) and SP-D KO mice were exposed to cigarette smoke (CS) or room air for 12 weeks. The pulmonary artery, left anterior descending coronary artery, and basilar artery (BA) were isolated and mounted in wire myographs. Contractile concentration response curves to endothelin-1 and UDP were obtained. RESULTS: CSE caused a leftward shift in the concentration response curves for endothelin-1 in the BA for both WT and SP-D KO. UDP, acting on the purinergic P2Y6 receptor, caused reduced contraction in the left descending artery and increased contraction in the BA in the CSE WT mice. SP-D KO mice displayed no smoke induced changes, but were surprisingly similar to the CSE WT. CONCLUSION: The contractility to UDP was altered in the brain and heart vasculature of CSE mice. SP-D KO (both control and CSE) and CSE WT had similar changes in contractility compared to control WT. IMPLICATIONS: These results show that sub-chronic smoking induces vascular changes in the WT, mainly for the purinergic P2Y6 receptor together with minor changes for the endothelin-1 receptor. SP-D KO (both control and CSE) does not show any further changes compared to CSE WT.


Assuntos
Proteína D Associada a Surfactante Pulmonar/metabolismo , Fumar/fisiopatologia , Vasoconstrição/fisiologia , Animais , Pulmão/metabolismo , Masculino , Camundongos Knockout , Miografia , Enfisema Pulmonar/etiologia , Receptor de Endotelina A/metabolismo , Receptores Purinérgicos P2Y/metabolismo
15.
J Headache Pain ; 15: 22, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24754925

RESUMO

BACKGROUND: Migraine attacks occur spontaneously in those who suffer from the condition, but migraine-like attacks can also be induced artificially by a number of substances. Previously published evidence makes the meninges a likely source of migraine related pain. This article investigates the effect of several vasodilators on meningeal arteries in order to find a connection between the effect of a substance on a meningeal vessel and its ability to artificially induce migraine. METHODS: A myograph setup was used to test the vasodilator properties of the substances acetylcholine (ACh), sodium nitroprusside (SNP), sildenafil, prostaglandin E2 (PGE2), pituitary adenylate cyclase activating peptide-38 (PACAP-38), calcitonin gene-related peptide (CGRP) and NaCl buffer on meningeal arteries from human and rat. An unpaired t-test was used to statistically compare the mean Emax(%) at the highest concentration of each substance to the Emax(%) of NaCl buffer. RESULTS: In the human experiments, all substances except PACAP-38 had an Emax (%) higher than the NaCl buffer, but the difference was only significant for SNP and CGRP. For the human samples, clinically tested antimigraine compounds (sumatriptan, telcagepant) were applied to the isolated arteries, and both induced a significant decrease of the effect of exogenously administrated CGRP. In experiments on rat middle meningeal arteries, pre-contracted with PGF2α, similar tendencies were seen. When the pre-contraction was switched to K+ in a separate series of experiments, CGRP and sildenafil significantly relaxed the arteries. CONCLUSIONS: Still no definite answer can be given as to why pain is experienced during an attack of migraine. No clear correlation was found between the efficacy of a substance as a meningeal artery vasodilator in human and the ability to artificially induce migraine or the mechanism of action. Vasodilatation could be an essential trigger, but only in conjunction with other unknown factors. The vasculature of the meninges likely contributes to the propagation of the migrainal cascade of symptoms, but more research is needed before any conclusions can be drawn about the nature of this contribution.


Assuntos
Artérias Meníngeas/fisiologia , Transtornos de Enxaqueca , Vasodilatação/fisiologia , Vasodilatadores/farmacologia , Animais , Humanos , Masculino , Artérias Meníngeas/efeitos dos fármacos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/fisiopatologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Purinas/farmacologia , Purinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Citrato de Sildenafila , Especificidade da Espécie , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Sumatriptana/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/uso terapêutico
16.
Vascul Pharmacol ; 153: 107231, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37730143

RESUMO

Göttingen Minipigs (GM) are used as an important preclinical model for cardiovascular safety pharmacology and for evaluation of cardiovascular drug targets. To improve the translational value of the GM model, the current study represents a basic characterization of vascular responses to endothelial regulators and sympathetic, parasympathetic, and sensory neurotransmitters in different anatomical origins. The aim of the current comparative and descriptive study is to use myography to characterize the vasomotor responses of coronary artery isolated from GM and compare the responses to those obtained from parallel studies using cerebral and mesenteric arteries. The selected agonists for sympathetic (norepinephrine), parasympathetic (carbachol), sensory (calcitonin gene-related peptide, CGRP), and endothelial pathways (endothelin-1, ET-1, and bradykinin) were used for comparison. Further, the robust nature of the vasomotor responses was evaluated after 24 h of cold storage of vascular tissue mimicking the situation under which human biopsies are often kept before experiments or grafting is feasible. Results show that bradykinin and CGRP consistently dilated, and endothelin consistently contracted artery segments from coronary, cerebral, and mesenteric origin. By comparison, norepinephrine and carbachol, had responses that varied with the anatomical source of the tissues. To support the basic characterization of GM vasomotor responses, we demonstrated the presence of mRNA encoding selected vascular receptors (CGRP- and ETA-receptors) in fresh artery segments. In conclusion, the vasomotor responses of isolated coronary, cerebral, and mesenteric arteries to selected agonists of endothelial, sympathetic, parasympathetic, and sensory pathways are different and the phenotypes are similar to sporadic human findings.


Assuntos
Bradicinina , Peptídeo Relacionado com Gene de Calcitonina , Suínos , Animais , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Porco Miniatura/metabolismo , Bradicinina/farmacologia , Bradicinina/metabolismo , Carbacol/metabolismo , Músculo Liso Vascular/metabolismo , Norepinefrina/farmacologia , Norepinefrina/metabolismo , Artérias Mesentéricas/metabolismo , Vasodilatação
17.
Cells ; 11(15)2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35954288

RESUMO

Migraines constitute a common neurological and headache disorder affecting around 15% of the world's population. In addition to other mechanisms, neurogenic neuroinflammation has been proposed to play a part in migraine chronification, which includes peripheral and central sensitization. There is therefore considerable evidence suggesting that inflammation in the intracranial meninges could be a key element in addition to calcitonin gene-related peptide (CGRP), leading to sensitization of trigeminal meningeal nociceptors in migraines. There are several studies that have utilized this approach, with a strong focus on using inflammatory animal models. Data from these studies show that the inflammatory process involves sensitization of trigeminovascular afferent nerve terminals. Further, by applying a wide range of different pharmacological interventions, insight has been gained on the pathways involved. Importantly, we discuss how animal models should be used with care and that it is important to evaluate outcomes in the light of migraine pathology.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Inflamação , Meninges , Nociceptores/metabolismo
18.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36558896

RESUMO

Aneurysmal subarachnoid haemorrhage (SAH) is a haemorrhagic stroke that causes approximately 5% of all stroke incidents. We have been working on a treatment strategy that targets changes in cerebrovascular contractile receptors, by blocking the MEK/ERK1/2 signalling pathway. Recently, a positive effect of trametinib was found in male rats, but investigations of both sexes in pre-clinical studies are an important necessity. In the current study, a SAH was induced in female rats, by autologous blood-injection into the pre-chiasmatic cistern. This produces a dramatic, transient increase in intracranial pressure (ICP) and an acute and prolonged decrease in cerebral blood flow. Rats were then treated with either vehicle or three doses of 0.5 mg/kg trametinib (specific MEK/ERK1/2 inhibitor) intraperitoneally at 3, 9, and 24 h after the SAH. The outcome was assessed by a panel of tests, including intracranial pressure (ICP), sensorimotor tests, a neurological outcome score, and myography. We observed a significant difference in arterial contractility and a reduction in subacute increases in ICP when the rats were treated with trametinib. The sensory motor and neurological outcomes in trametinib-treated rats were significantly improved, suggesting that the improved outcome in females is similar to that of males treated with trametinib.

19.
Front Endocrinol (Lausanne) ; 13: 850525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721713

RESUMO

Increased incidence of bone fractures in the elderly is associated with gradual sarcopenia. Similar deterioration of bone quality is seen with prolonged bed rest, spinal cord injuries or in astronauts exposed to microgravity and, preceded by loss of muscle mass. Signaling mechanisms involving uridine-5'-triphosphate (UTP) regulate bone homeostasis via P2Y2 receptors on osteoblasts and osteoclasts, whilst dictating the bone cells' response to mechanical loading. We hypothesized that muscle paralysis-induced loss of bone quality would be prevented in P2Y2 receptor knockout (KO) mice. Female mice injected with botulinum toxin (BTX) in the hind limb developed muscle paralysis and femoral DXA analysis showed reduction in bone mineral density (<10%), bone mineral content (<16%) and bone area (<6%) in wildtype (WT) compared to KO littermates (with <13%, <21%, <9% respectively). The femoral metaphyseal strength was reduced equally in both WT and KO (<37%) and <11% in diaphysis region of KO, compared to the saline injected controls. Tibial micro-CT showed reduced cortical thickness (12% in WT vs. 9% in KO), trabecular bone volume (38% in both WT and KO), trabecular thickness (22% in WT vs. 27% in KO) and increased SMI (26% in WT vs. 19% in KO) after BTX. Tibial histomorphometry showed reduced formation in KO (16%) but unchanged resorption in both WT and KO. Furthermore, analyses of DXA and bone strength after regaining the muscle function showed partial bone recovery in the KO but no difference in the bone recovery in WT mice. Primary osteoblasts from KO mice displayed increased viability and alkaline phosphatase activity but, impaired bone nodule formation. Significantly more TRAP-positive osteoclasts were generated from KO mice but displayed reduced resorptive function. Our data showed that hind limb paralysis with a single dose of BTX caused profound bone loss after 3 weeks, and an incomplete reversal of bone loss by week 19. Our findings indicate no role of the P2Y2 receptor in the bone loss after a period of skeletal unloading in mice or, in the bone recovery after restoration of muscle function.


Assuntos
Doenças Ósseas Metabólicas , Animais , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/prevenção & controle , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Knockout , Músculos , Paralisia
20.
Trends Pharmacol Sci ; 42(4): 217-225, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33495027

RESUMO

Primary headaches are one of the most common conditions; migraine being most prevalent. Recent work on the pathophysiology of migraine suggests a mismatch in the communication or tuning of the trigeminovascular system, leading to sensitization and the release of calcitonin gene-related peptide (CGRP). In the current Opinion, we use the up-to-date molecular understanding of mechanisms behind migraine pain, to provide novel aspects on how to modify the system and for the development of future treatments; acute as well as prophylactic. We explore the distribution and the expression of neuropeptides themselves, as well as certain ion channels, and most importantly how they may act in concert as modulators of excitability of both the trigeminal C neurons and the Aδ neurons.


Assuntos
Transtornos de Enxaqueca , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Peptídeo Relacionado com Gene de Calcitonina , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Biologia Molecular , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA