Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Hum Mol Genet ; 31(24): 4131-4142, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35861666

RESUMO

KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Nanismo , Deficiência Intelectual , Anormalidades Dentárias , Gravidez , Feminino , Humanos , Fácies , Anormalidades Dentárias/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Hibridização Genômica Comparativa , Proteínas Repressoras/genética , Fenótipo , Nanismo/genética , População Europeia
2.
Am J Med Genet A ; 194(6): e63534, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318947

RESUMO

UPF3B encodes the Regulator of nonsense transcripts 3B protein, a core-member of the nonsense-mediated mRNA decay pathway, protecting the cells from the potentially deleterious actions of transcripts with premature termination codons. Hemizygous variants in the UPF3B gene cause a spectrum of neuropsychiatric issues including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, and schizophrenia/childhood-onset schizophrenia (COS). The number of patients reported to date is very limited, often lacking an extensive phenotypical and neuroradiological description of this ultra-rare syndrome. Here we report three subjects harboring UPF3B variants, presenting with variable clinical pictures, including cognitive impairment, central hypotonia, and syndromic features. Patients 1 and 2 harbored novel UPF3B variants-the p.(Lys207*) and p.(Asp429Serfs*27) ones, respectively-while the p.(Arg225Lysfs*229) variant, identified in Patient 3, was already reported in the literature. Novel features in our patients are represented by microcephaly, midface hypoplasia, and brain malformations. Then, we reviewed pertinent literature and compared previously reported subjects to our cases, providing possible insights into genotype-phenotype correlations in this emerging condition. Overall, the detailed phenotypic description of three patients carrying UPF3B variants is useful not only to expand the genotypic and phenotypic spectrum of UPF3B-related disorders, but also to ameliorate the clinical management of affected individuals.


Assuntos
Fenótipo , Humanos , Masculino , Feminino , Criança , Proteínas de Ligação a RNA/genética , Estudos de Associação Genética , Pré-Escolar , Mutação/genética , Adolescente , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Predisposição Genética para Doença
3.
Epilepsia ; 65(4): 1029-1045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135915

RESUMO

OBJECTIVE: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.


Assuntos
Encefalopatias , Epilepsia Generalizada , Epilepsia , Deficiência Intelectual , Humanos , Estudos Retrospectivos , Hipotonia Muscular , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/complicações , Encefalopatias/genética , Convulsões/complicações , Epilepsia Generalizada/complicações , Eletroencefalografia/métodos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína 4 Homóloga a Disks-Large/genética
4.
Pediatr Dev Pathol ; 27(2): 181-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37981638

RESUMO

Coffin-Siris syndrome is an autosomal dominant disorder with neurological, cardiovascular, and gastrointestinal symptoms. Patients with Coffin-Siris syndrome typically have variable degree of developmental delay or intellectual disability, muscular hypotonia, dysmorphic facial features, sparse scalp hair, but otherwise hirsutism and fifth digit nail or distal phalanx hypoplasia or aplasia. Coffin-Siris syndrome is caused by pathogenic variants in 12 different genes including SMARCB1 and ARID1A. Pathogenic SMARCB1 gene variants cause Coffin-Siris syndrome 3 whereas pathogenic ARID1A gene variants cause Coffin-Siris syndrome 2. Here, we present two prenatal Coffin-Siris syndrome cases with autosomal dominant pathogenic variants: SMARCB1 gene c.1066_1067del, p.(Leu356AspfsTer4) variant, and a novel ARID1A gene c.1920+3_1920+6del variant. The prenatal phenotype in Coffin-Siris syndrome has been rarely described. This article widens the phenotypic spectrum of prenatal Coffin-Siris syndrome with severely hypoplastic right ventricle with VSD and truncus arteriosus type III, persisting left superior and inferior caval vein, bilateral olfactory nerve aplasia, and hypoplastic thymus. A detailed clinical description of the patients with ultrasound, MRI, and post mortem pictures of the affected fetuses showing the wide phenotypic spectrum of the disease is presented.


Assuntos
Anormalidades Múltiplas , Face/anormalidades , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Pescoço/anormalidades , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Face/patologia , Fenótipo
5.
Genet Med ; 24(2): 439-453, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906501

RESUMO

PURPOSE: This study aimed to describe a multisystemic disorder featuring cardiovascular, facial, musculoskeletal, and cutaneous anomalies caused by heterozygous loss-of-function variants in TAB2. METHODS: Affected individuals were analyzed by next-generation technologies and genomic array. The presumed loss-of-function effect of identified variants was assessed by luciferase assay in cells transiently expressing TAB2 deleterious alleles. In available patients' fibroblasts, variant pathogenicity was further explored by immunoblot and osteoblast differentiation assays. The transcriptomic profile of fibroblasts was investigated by RNA sequencing. RESULTS: A total of 11 individuals from 8 families were heterozygotes for a novel TAB2 variant. In total, 7 variants were predicted to be null alleles and 1 was a missense change. An additional subject was heterozygous for a 52 kb microdeletion involving TAB2 exons 1 to 3. Luciferase assay indicated a decreased transcriptional activation mediated by NF-κB signaling for all point variants. Immunoblot analysis showed a reduction of TAK1 phosphorylation while osteoblast differentiation was impaired. Transcriptomic analysis identified deregulation of multiple pleiotropic pathways, such as TGFß-, Ras-MAPK-, and Wnt-signaling networks. CONCLUSION: Our data defined a novel disorder associated with loss-of-function or, more rarely, hypomorphic alleles in a restricted linker region of TAB2. The pleiotropic manifestations in this disorder partly recapitulate the 6q25.1 (TAB2) microdeletion syndrome and deserve the definition of cardio-facial-cutaneous-articular syndrome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , NF-kappa B , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Éxons/genética , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais
6.
J Inherit Metab Dis ; 45(2): 223-234, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34622459

RESUMO

Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) deficiency due to the homozygous PCK1 variant has recently been associated with childhood-onset hypoglycemia with a recognizable pattern of abnormal urine organic acids. In this study, 21 children and 3 adult patients with genetically confirmed PEPCK-C deficiency were diagnosed during the years 2016 to 2019 and the available biochemical and clinical data were collected. All patients were ethnic Finns. Most patients (22 out of 24) had a previously published homozygous PCK1 variant c.925G>A. Two patients had a novel compound heterozygous PCK1 variant c.925G>A and c.716C>T. The laboratory results showed abnormal urine organic acid profile with increased tricarboxylic acid cycle intermediates and inadequate ketone body production during hypoglycemia. The hypoglycemic episodes manifested predominantly in the morning. Infections, fasting or poor food intake, heavy exercise, alcohol consumption, and breastfeeding were identified as triggering factors. Five patients presented with neonatal hypoglycemia. Hypoglycemic seizures occurred in half of the patients (12 out of 24). The first hypoglycemic episode often occurred at the age of 1-2 years, but it sometimes presented at a later age, and could re-occur during school age or adulthood. This study adds to the laboratory data on PEPCK-C deficiency, confirming the recognizable urine organic acid pattern and identifying deficient ketogenesis as a novel laboratory finding. The phenotype is expanded suggesting that the risk of hypoglycemia may continue into adulthood if predisposing factors are present.


Assuntos
Hipoglicemia , Fosfoenolpiruvato Carboxiquinase (GTP) , Adulto , Erros Inatos do Metabolismo dos Carboidratos , Criança , Gluconeogênese , Humanos , Hipoglicemia/genética , Hipoglicemiantes , Corpos Cetônicos , Hepatopatias , Fenótipo , Fosfoenolpiruvato Carboxiquinase (GTP)/deficiência , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo
7.
Am J Med Genet A ; 185(9): 2636-2645, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33913595

RESUMO

The increasing demand for advanced genomic services has finally come to the attention of healthcare systems and stakeholders who are now eager to find creative solutions to increase the pool of genomic literate providers. Training in genetics and dysmorphology has historically been conducted as a self-driven practice in pattern recognition, ideally within a formal or informal apprenticeship supervised by a master diagnostician. In recent times, case-based learning, framed by flipped classroom pedagogy have become the preferred teaching methods for complex medical topics such as genetics and genomics. To illuminate this perspective, our article was written in honor of the teaching style and pedagogy of Dr John M. Graham Jr and his lifelong commitment to medical education and mentoring.


Assuntos
Currículo/tendências , Educação Médica/tendências , Genética Médica/educação , Ensino/tendências , Humanos
8.
Am J Med Genet A ; 179(3): 498-502, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30676690

RESUMO

ALG11-Congenital Disorder of Glycosylation (ALG11-CDG, also known as congenital disorder of glycosylation type Ip) is an inherited inborn error of metabolism due to abnormal protein and lipid glycosylation. We describe two unrelated patients with ALG11-CDG due to novel mutations, review the literature of previously described affected individuals, and further expand the clinical phenotype. Both affected individuals reported here had severe psychomotor disabilities and epilepsy. Their fibroblasts synthesized truncated precursor glycan structures, consistent with ALG11-CDG, while also showing hypoglycosylation of a novel biomarker, GP130. Surprisingly, one patient presented with normal transferrin glycosylation profile, a feature that has not been reported previously in patients with ALG11-CDG. Together, our data expand the clinical and mutational spectrum of ALG11-CDG.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Manosiltransferases/genética , Mutação , Fenótipo , Adolescente , Alelos , Biomarcadores , Pré-Escolar , Eletroencefalografia , Feminino , Glicosilação , Humanos , Imageamento por Ressonância Magnética , Masculino , Linhagem , Tomografia Computadorizada por Raios X
9.
Mol Syndromol ; 15(2): 149-155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585553

RESUMO

Introduction: Horizontal gaze palsy with progressive scoliosis-2 (HGPPS2, MIM 617542) with impaired intellectual development aka developmental split-brain syndrome is an ultra-rare congenital disorder caused by pathogenic biallelic variants in the deleted in colorectal cancer (DCC) gene. Case Presentation: We report the clinical and genetic characterization of a Syrian patient with a HGPPS2 phenotype and review the previously published cases of HGPPS2. The genetic screening was performed using exome sequencing on Illumina platform. Genetic analysis revealed a novel DCC c.(?_1912)_(2359_?)dup, p.(Ser788Tyrfs*4) variant segregating recessively in the family. This type of variant has not been described previously in the HGPPS2 patients. To date, including the case reported here, three different homozygous pathogenic frameshift variants, one homozygous missense variant, and an intragenic duplication in the DCC gene have been reported in 8 patients with the HGPPS2 syndrome. Conclusion: The analysis of duplications and deletions in the DCC should be included in the routine genetic diagnostic evaluation of patients with suspected HGPPS2. This report expands the knowledge of phenotypic and genotypic spectrum of pathogenic variants causing HGPPS2.

10.
Genome Med ; 16(1): 72, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811945

RESUMO

BACKGROUND: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects. METHODS: Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. RESULTS: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / + , KINSSHIP/KINSSHIP, LoF/ + , LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. CONCLUSIONS: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.


Assuntos
Deficiência Intelectual , Transcriptoma , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Deficiência Intelectual/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , Fenótipo , Peixe-Zebra/genética
11.
Eur J Hum Genet ; 32(7): 858-863, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38778080

RESUMO

The ABC and ACMG variant classification systems were compared by asking mainly European clinical laboratories to classify variants in 10 challenging cases using both systems, and to state if the variant in question would be reported as a relevant result or not as a measure of clinical utility. In contrast to the ABC system, the ACMG system was not made to guide variant reporting but to determine the likelihood of pathogenicity. Nevertheless, this comparison is justified since the ACMG class determines variant reporting in many laboratories. Forty-three laboratories participated in the survey. In seven cases, the classification system used did not influence the reporting likelihood when variants labeled as "maybe report" after ACMG-based classification were included. In three cases of population frequent but disease-associated variants, there was a difference in favor of reporting after ABC classification. A possible reason is that ABC step C (standard variant comments) allows a variant to be reported in one clinical setting but not another, e.g., based on Bayesian-based likelihood calculation of clinical relevance. Finally, the selection of ACMG criteria was compared between 36 laboratories. When excluding criteria used by less than four laboratories (<10%), the average concordance rate was 46%. Taken together, ABC-based classification is more clear-cut than ACMG-based classification since molecular and clinical information is handled separately, and variant reporting can be adapted to the clinical question and phenotype. Furthermore, variants do not get a clinically inappropriate label, like pathogenic when not pathogenic in a clinical context, or variant of unknown significance when the significance is known.


Assuntos
Variação Genética , Humanos , Testes Genéticos/normas , Testes Genéticos/métodos
12.
medRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293053

RESUMO

Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.

13.
Eur J Med Genet ; 66(8): 104807, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385405

RESUMO

Jansen de Vries syndrome (JDVS, OMIM: 617450) is a rare neurodevelopmental disorder associated with hypotonia, behavioral features, high threshold to pain, short stature, ophthalmological abnormalities, dysmorphism and occasionally a structural cardiac condition. It is caused by truncating variants of the last and penultimate exons of PPM1D. So far, 21 patients with JVDS have been reported in the literature. Here, we describe four novel cases of JVDS and review the current literature. Notably, our patients 1, 3 and 4 do not have intellectual disability albeit they have significant developmental difficulties. Thus, the phenotype may span from a classic intellectual disability syndrome to a milder neurodevelopmental disorder. Interestingly, two of our patients have received successful growth hormone treatment. Considering the phenotype of all the known JDVS patients, a cardiological consultation is recommended, as at least 7/25 patients showed a structural cardiac defect. Episodic fever and vomiting may associate with hypoglycemia and may even mimic a metabolic disorder. We also report the first JDVS patient with a mosaic gene defect and a mild neurodevelopmental phenotype.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Anormalidades Múltiplas/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Fenótipo
14.
Eur J Med Genet ; 65(11): 104626, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36155125

RESUMO

Noonan syndrome is a genetically heterogeneous developmental disorder, which usually includes findings such as short stature, facial dysmorphia, cardiac abnormalities and a varying degree of intellectual disability. We present a unique case of a rare variant of Noonan syndrome in a very preterm female infant born at 28 + 4 gestational weeks, with abnormal radiological findings visible at fetal magnetic resonance imaging (MRI) and evolution of the brain lesions during infancy.


Assuntos
Síndrome de Noonan , Feminino , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Síndrome de Noonan/diagnóstico por imagem , Síndrome de Noonan/genética , Gravidez
15.
J Clin Med ; 11(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35407445

RESUMO

Sensorineural hearing loss (SNHL) is one of the most common sensory deficits worldwide, and genetic factors contribute to at least 50−60% of the congenital hearing loss cases. The transmembrane channel-like protein 1 (TMC1) gene has been linked to autosomal recessive (DFNB7/11) and autosomal dominant (DFNA36) non-syndromic hearing loss, and it is a relatively common genetic cause of SNHL. Here, we report eight Finnish families with 11 affected family members with either recessively inherited homozygous or compound heterozygous TMC1 variants associated with congenital moderate-to-profound hearing loss, or a dominantly inherited heterozygous TMC1 variant associated with postlingual progressive hearing loss. We show that the TMC1 c.1534C>T, p.(Arg512*) variant is likely a founder variant that is enriched in the Finnish population. We describe a novel recessive disease-causing TMC1 c.968A>G, p.(Tyr323Cys) variant. We also show that individuals in this cohort who were diagnosed early and received timely hearing rehabilitation with hearing aids and cochlear implants (CI) have reached good speech perception in noise. Comparison of the genetic data with the outcome of CI rehabilitation increases our understanding of the extent to which underlying pathogenic gene variants explain the differences in CI rehabilitation outcomes.

16.
Front Cell Dev Biol ; 10: 1020609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726590

RESUMO

In 2016 and 2018, Chung, Jansen and others described a new syndrome caused by haploinsufficiency of PHIP (pleckstrin homology domain interacting protein, OMIM *612,870) and mainly characterized by developmental delay (DD), learning difficulties/intellectual disability (ID), behavioral abnormalities, facial dysmorphism and obesity (CHUJANS, OMIM #617991). So far, PHIP alterations appear to be a rare cause of DD/ID. "Omics" technologies such as exome sequencing or array analyses have led to the identification of distinct types of alterations of PHIP, including, truncating variants, missense substitutions, splice variants and large deletions encompassing portions of the gene or the entire gene as well as adjacent genomic regions. We collected clinical and genetic data of 23 individuals with PHIP-associated Chung-Jansen syndrome (CHUJANS) from all over Europe. Follow-up investigations (e.g. Sanger sequencing, qPCR or Fluorescence-in-situ-Hybridization) and segregation analysis showed either de novo occurrence or inheritance from an also (mildly) affected parent. In accordance with previously described patients, almost all individuals reported here show developmental delay (22/23), learning disability or ID (22/23), behavioral abnormalities (20/23), weight problems (13/23) and characteristic craniofacial features (i.e. large ears/earlobes, prominent eyebrows, anteverted nares and long philtrum (23/23)). To further investigate the facial gestalt of individuals with CHUJANS, we performed facial analysis using the GestaltMatcher approach. By this, we could establish that PHIP patients are indistinguishable based on the type of PHIP alteration (e.g. missense, loss-of-function, splice site) but show a significant difference to the average face of healthy individuals as well as to individuals with Prader-Willi syndrome (PWS, OMIM #176270) or with a CUL4B-alteration (Intellectual developmental disorder, X-linked, syndromic, Cabezas type, OMIM #300354). Our findings expand the mutational and clinical spectrum of CHUJANS. We discuss the molecular and clinical features in comparison to the published individuals. The fact that some variants were inherited from a mildly affected parent further illustrates the variability of the associated phenotype and outlines the importance of a thorough clinical evaluation combined with genetic analyses for accurate diagnosis and counselling.

17.
JBMR Plus ; 5(7): e10509, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258505

RESUMO

Ras homologous guanosine triphosphatases (RhoGTPases) control several cellular functions, including cytoskeletal actin remodeling and cell migration. Their activities are downregulated by GTPase-activating proteins (GAPs). Although RhoGTPases are implicated in bone remodeling and osteoclast and osteoblast function, their significance in human bone health and disease remains elusive. Here, we report defective RhoGTPase regulation as a cause of severe, early-onset, autosomal-dominant skeletal fragility in a three-generation Finnish family. Affected individuals (n = 13) presented with multiple low-energy peripheral and vertebral fractures despite normal bone mineral density (BMD). Bone histomorphometry suggested reduced bone volume, low surface area covered by osteoblasts and osteoclasts, and low bone turnover. Exome sequencing identified a novel heterozygous missense variant c.652G>A (p.G218R) in ARHGAP25, encoding a GAP for Rho-family GTPase Rac1. Variants in the ARHGAP25 5' untranslated region (UTR) also associated with BMD and fracture risk in the general population, across multiple genomewide association study (GWAS) meta-analyses (lead variant rs10048745). ARHGAP25 messenger RNA (mRNA) was expressed in macrophage colony-stimulating factor (M-CSF)-stimulated human monocytes and mouse osteoblasts, indicating a possible role for ARHGAP25 in osteoclast and osteoblast differentiation and activity. Studies on subject-derived osteoclasts from peripheral blood mononuclear cells did not reveal robust defects in mature osteoclast formation or resorptive activity. However, analysis of osteosarcoma cells overexpressing the ARHGAP25 G218R-mutant, combined with structural modeling, confirmed that the mutant protein had decreased GAP-activity against Rac1, resulting in elevated Rac1 activity, increased cell spreading, and membrane ruffling. Our findings indicate that mutated ARHGAP25 causes aberrant Rac1 function and consequently abnormal bone metabolism, highlighting the importance of RhoGAP signaling in bone metabolism in familial forms of skeletal fragility and in the general population, and expanding our understanding of the molecular pathways underlying skeletal fragility. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

18.
Clin Cancer Res ; 25(17): 5301-5314, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175093

RESUMO

PURPOSE: Understanding and explaining hereditary predisposition to cancer has focused on the genetic etiology of the disease. However, mutations in known genes associated with breast cancer, such as BRCA1 and BRCA2, account for less than 25% of familial cases of breast cancer. Recently, specific epigenetic modifications at BRCA1 have been shown to promote hereditary breast cancer, but the broader potential for epigenetic contribution to hereditary breast cancer is not yet well understood. EXPERIMENTAL DESIGN: We examined DNA methylation through deep bisulfite sequencing of CpG islands and known promoter or regulatory regions in peripheral blood DNA from 99 patients with familial or early-onset breast or ovarian cancer, 6 unaffected BRCA mutation carriers, and 49 unaffected controls. RESULTS: In 9% of patients, we observed altered methylation in the promoter regions of genes known to be involved in cancer, including hypermethylation at the tumor suppressor PTEN and hypomethylation at the proto-oncogene TEX14. These alterations occur in the form of allelic methylation that span up to hundreds of base pairs in length. CONCLUSIONS: Our observations suggest a broader role for DNA methylation in early-onset, familial risk breast cancer. Further studies are warranted to clarify these mechanisms and the benefits of DNA methylation screening for early risk prediction of familial cancers.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Síndromes Neoplásicas Hereditárias/genética , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Ilhas de CpG , Epigenômica , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Síndromes Neoplásicas Hereditárias/sangue , Síndromes Neoplásicas Hereditárias/patologia , PTEN Fosfo-Hidrolase/genética , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Sulfitos/química , Fatores de Transcrição/genética , Adulto Jovem
19.
Mol Genet Genomic Med ; 7(10): e00930, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31411008

RESUMO

BACKGROUND: Fabry disease is caused by a deficient or an absent alfa-galactosidase A activity and is an X-linked disorder that results in organ damage and a shortened life span, especially in males. The severity of the disease depends on the type of mutation, gender, skewed X-chromosome inactivation, and other still unknown factors. METHODS: In this article, we describe the natural course of a common classic Fabry disease mutation, p.Arg227Ter or p.R227*, in Finland. RESULTS: Four males and ten females belonged to two extended families. The mean age was 46 years (SD 18.4). Six patients (43%) had cardiac hypertrophy, three patients (21%) had ischemic stroke, and none had severe kidney dysfunction. Three patients had atrial fibrillation; two patients who had atrial fibrillation also had pacemakers. All males over 30 years of age had at least one of the following manifestations: cardiac hypertrophy, stroke, or proteinuria. In females, the severity of Fabry disease varied from classic multiorgan disease to a condition that mimicked the attenuated cardiac variant. No one was totally asymptomatic without any signs of Fabry disease. Cardiac magnetic resonance imaging was performed on nine of 14 patients was the most sensitive for detecting early cardiac manifestations. Five patients (55%) had late gadolinium enhancement-positive segments. CONCLUSION: Cardiac involvement should be effectively detected in females before considering them asymptomatic mutation carriers.


Assuntos
Doença de Fabry/patologia , População Branca/genética , alfa-Galactosidase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Códon sem Sentido , Doença de Fabry/genética , Feminino , Finlândia , Estudos de Associação Genética , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Índice de Gravidade de Doença , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA