Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Res Methodol ; 24(1): 181, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143466

RESUMO

BACKGROUND: Synthetic Electronic Health Records (EHRs) are becoming increasingly popular as a privacy enhancing technology. However, for longitudinal EHRs specifically, little research has been done into how to properly evaluate synthetically generated samples. In this article, we provide a discussion on existing methods and recommendations when evaluating the quality of synthetic longitudinal EHRs. METHODS: We recommend to assess synthetic EHR quality through similarity to real EHRs in low-dimensional projections, accuracy of a classifier discriminating synthetic from real samples, performance of synthetic versus real trained algorithms in clinical tasks, and privacy risk through risk of attribute inference. For each metric we discuss strengths and weaknesses, next to showing how it can be applied on a longitudinal dataset. RESULTS: To support the discussion on evaluation metrics, we apply discussed metrics on a dataset of synthetic EHRs generated from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) repository. CONCLUSIONS: The discussion on evaluation metrics provide guidance for researchers on how to use and interpret different metrics when evaluating the quality of synthetic longitudinal EHRs.


Assuntos
Algoritmos , Registros Eletrônicos de Saúde , Registros Eletrônicos de Saúde/estatística & dados numéricos , Registros Eletrônicos de Saúde/normas , Humanos , Estudos Longitudinais , Privacidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA