Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(29): 16081-16089, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37437195

RESUMO

Magic spot nucleotides (p)ppGpp are important signaling molecules in bacteria and plants. In the latter, RelA-SpoT homologue (RSH) enzymes are responsible for (p)ppGpp turnover. Profiling of (p)ppGpp is more difficult in plants than in bacteria due to lower concentrations and more severe matrix effects. Here, we report that capillary electrophoresis mass spectrometry (CE-MS) can be deployed to study (p)ppGpp abundance and identity in Arabidopsis thaliana. This goal is achieved by combining a titanium dioxide extraction protocol and pre-spiking with chemically synthesized stable isotope-labeled internal reference compounds. The high sensitivity and separation efficiency of CE-MS enables monitoring of changes in (p)ppGpp levels in A. thaliana upon infection with the pathogen Pseudomonas syringae pv. tomato (PstDC3000). We observed a significant increase of ppGpp post infection that is also stimulated by the flagellin peptide flg22 only. This increase depends on functional flg22 receptor FLS2 and its interacting kinase BAK1 indicating that pathogen-associated molecular pattern (PAMP) receptor-mediated signaling controls ppGpp levels. Transcript analyses showed an upregulation of RSH2 upon flg22 treatment and both RSH2 and RSH3 after PstDC3000 infection. Arabidopsis mutants deficient in RSH2 and RSH3 activity display no ppGpp accumulation upon infection and flg22 treatment, supporting the involvement of these synthases in PAMP-triggered innate immune responses to pathogens within the chloroplast.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Guanosina Pentafosfato , Proteínas de Arabidopsis/metabolismo , Transdução de Sinais , Plantas , Cloroplastos/metabolismo
2.
Acc Chem Res ; 54(21): 4036-4050, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648267

RESUMO

Much like linear, branched, and cyclic alkanes, condensed phosphates exist as linear, branched, and cyclic structures. Inasmuch as alkanes are the cornerstone of organic chemistry, generating an inexplorably large chemical space, a comparable richness in structures can be expected for condensed phosphates, as also for them the concepts of isomerism apply. Little of their chemical space has been charted, and only a few different synthesis methods are available to construct isomers of condensed phosphates. Here, we will discuss the application of phosphoramidites with one, two, or three P-N bonds that can be substituted selectively to access different condensed phosphates in a highly controllable manner. Work directed toward the further exploration of this chemical space will contribute to our understanding of the fundamental chemistry of phosphates.In biology, condensed phosphates play important roles in the form of inorganic representatives, such as pyrophosphate, polyphosphate, and cyclophosphate, and also in conjugation with organic molecules, such as esters and amidates. Phosphorus is one of the six biogenic elements; the omnipresence of phosphates in biology points toward their critical involvement in prebiotic chemistry and the emergence of life itself. Indeed, it is hard to imagine any life without phosphate. It is therefore desirable to achieve through synthesis a better understanding of the chemistry of the condensed phosphates to further explore their biology.There is a rich but underexplored chemistry of the family of condensed phosphates per se, which is further diversified by their conjugation to important biomolecules and metabolites. For example, proteins may be polyphosphorylated on lysins, a very recent addition to posttranslational modifications. Adenosine triphosphate, as a representative of the small molecules, on the other hand, is well known as the universal cellular energy currency. In this Account, we will describe our motivations and our approaches to construct, modify, and synthetically apply different representatives of the condensed phosphates. We also describe the generation of hybrids composed of cyclic and linear structures of different oxidation states and develop them into reagents of great utility. A pertinent example is provided in the step-economic synthesis of the magic spot nucleotides (p)ppGpp. Finally, we provide an overview of 31P NMR data collected over the years in our laboratories, helping as a waymarker for not getting lost in condensation.

3.
Angew Chem Int Ed Engl ; 61(1): e202113231, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34727582

RESUMO

Condensed phosphates are a critically important class of molecules in biochemistry. Non-natural analogues are important for various applications, such as single-molecule real-time DNA sequencing. Often, such analogues contain more than three phosphate units in their oligophosphate chain. Consequently, investigations into phosphate reactivity enabling new ways of phosphate functionalization and oligophosphorylation are essential. Here, we scrutinize the potential of phosphates to act as arynophiles, paving the way for follow-up oligophosphorylation reactions. The aryne phosphate reaction is a powerful tool to-depending on the perspective-(oligo)phosphorylate arenes or arylate (oligo-cyclo)phosphates. Based on Kobayashi-type o-silylaryltriflates, the aryne phosphate reaction enables rapid entry into a broad spectrum of arylated products, like monophosphates, diphosphates, phosphodiesters and polyphosphates. The synthetic potential of these new transformations is demonstrated by efficient syntheses of nucleotide analogues and an unprecedented one-flask octaphosphorylation.

4.
Angew Chem Int Ed Engl ; 61(5): e202112457, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34734451

RESUMO

Stable isotope labelling is state-of-the-art in quantitative mass spectrometry, yet often accessing the required standards is cumbersome and very expensive. Here, a unifying synthetic concept for 18 O-labelled phosphates is presented, based on a family of modified 18 O2 -phosphoramidite reagents. This toolbox offers access to major classes of biologically highly relevant phosphorylated metabolites as their isotopologues including nucleotides, inositol phosphates, -pyrophosphates, and inorganic polyphosphates. 18 O-enrichment ratios >95 % and good yields are obtained consistently in gram-scale reactions, while enabling late-stage labelling. We demonstrate the utility of the 18 O-labelled inositol phosphates and pyrophosphates by assignment of these metabolites from different biological matrices. We demonstrate that phosphate neutral loss is negligible in an analytical setup employing capillary electrophoresis electrospray ionisation triple quadrupole mass spectrometry.


Assuntos
Compostos Organofosforados
5.
Angew Chem Int Ed Engl ; 61(22): e202201731, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35294098

RESUMO

Magic Spot Nucleotides (MSN) regulate the stringent response, a highly conserved bacterial stress adaptation mechanism, enabling survival under adverse external challenges. In times of antibiotic crisis, a detailed understanding of stringent response is essential, as potentially new targets for pharmacological intervention could be identified. In this study, we delineate the MSN interactome in Escherichia coli and Salmonella typhimurium applying a family of trifunctional photoaffinity capture compounds. We introduce MSN probes covering a diverse phosphorylation pattern, such as pppGpp, ppGpp, and pGpp. Our chemical proteomics approach provides datasets of putative MSN receptors both from cytosolic and membrane fractions that unveil new MSN targets. We find that the activity of the non-Nudix hydrolase ApaH is potently inhibited by pppGpp, which itself is converted to pGpp by ApaH. The capture compounds described herein will be useful to identify MSN interactomes across bacterial species.


Assuntos
Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Tetrafosfato , Nucleotídeos
6.
J Org Chem ; 85(22): 14496-14506, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32502348

RESUMO

The complex phosphorylation pattern of natural and modified pentaphosphorylated magic spot nucleotides is generated in a highly efficient way. A cyclic pyrophosphoryl phosphoramidite (cPyPA) reagent is used to introduce four phosphates on nucleosides regioselectively in a one-flask key transformation. The obtained magic spot nucleotides are used to develop a capillary electrophoresis UV detection method, enabling nucleotide assignment in complex bacterial extracts.

7.
J Am Chem Soc ; 141(38): 15013-15017, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31512870

RESUMO

Phosphoramidite analogues of modified cyclotriphosphates provide a general and step-economical synthesis of nucleoside triphosphates and analogues on scale without the need for protecting groups. These reagents enable rapid access to pure nucleoside oligophosphates and a range of other analogues that were previously difficult to obtain (e.g., NH, CH2, CCl2, and CF2 replacements for O, phosphono- and phosphoimidazolides, -morpholidates, -azidates, and -fluoridates). DFT calculations demonstrate that the selectivity of the cyclotriphosphate opening reactions proceeds via an in-line substitution mechanism that displaces the least charged leaving group.

8.
Org Biomol Chem ; 14(24): 5673-82, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26806535

RESUMO

The titanium(iii)-catalysed cross-selective reductive umpolung of Michael-acceptors represents a unique direct conjugate ß-alkylation reaction. It allows the cross-selective preparation of 1,6- and 1,4-difunctionalised building blocks without the requirement of stoichiometric organometallic reagents. In this full paper, the development and scope of the titanium(iii)-catalysed cross-selective reductive umpolung of Michael-acceptors is described. Based on the observed selectivities and additional mechanistic experiments a refined mechanistic proposal is presented.

9.
Chemistry ; 21(6): 2339-42, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25476744

RESUMO

A sequence of two titanium(III)-catalyzed reductive umpolung reactions is reported that allows the rapid construction of benzazo- and benzoxozine building blocks. The first step is a reductive cross-coupling of quinolones or chromones with Michael acceptors. This reaction proceeds with complete syn-selectivity for the quinolone functionalization while the anti-diastereomers are obtained as the major products from chromones. With different reaction conditions, the stereochemical outcome can be altered to afford the syn-chromanone products as well. A subsequent reductive ketyl radical cyclization forges the tricyclic title compounds in good yields. A stereochemical model explaining the observed stereoselectivities is provided and the product configurations were unambiguously verified by X-ray analyses and 2D NMR spectroscopic experiments.


Assuntos
Oxocinas/química , Titânio/química , Catálise , Cromonas/química , Cristalografia por Raios X , Ciclização , Conformação Molecular , Oxocinas/síntese química , Estereoisomerismo
11.
Angew Chem Weinheim Bergstr Ger ; 134(5): e202112457, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38505299

RESUMO

Stable isotope labelling is state-of-the-art in quantitative mass spectrometry, yet often accessing the required standards is cumbersome and very expensive. Here, a unifying synthetic concept for 18O-labelled phosphates is presented, based on a family of modified 18O2-phosphoramidite reagents. This toolbox offers access to major classes of biologically highly relevant phosphorylated metabolites as their isotopologues including nucleotides, inositol phosphates, -pyrophosphates, and inorganic polyphosphates. 18O-enrichment ratios >95 % and good yields are obtained consistently in gram-scale reactions, while enabling late-stage labelling. We demonstrate the utility of the 18O-labelled inositol phosphates and pyrophosphates by assignment of these metabolites from different biological matrices. We demonstrate that phosphate neutral loss is negligible in an analytical setup employing capillary electrophoresis electrospray ionisation triple quadrupole mass spectrometry.

12.
Nat Commun ; 11(1): 6035, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247133

RESUMO

The analysis of myo-inositol phosphates (InsPs) and myo-inositol pyrophosphates (PP-InsPs) is a daunting challenge due to the large number of possible isomers, the absence of a chromophore, the high charge density, the low abundance, and the instability of the esters and anhydrides. Given their importance in biology, an analytical approach to follow and understand this complex signaling hub is desirable. Here, capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry (ESI-MS) is implemented to analyze complex mixtures of InsPs and PP-InsPs with high sensitivity. Stable isotope labeled (SIL) internal standards allow for matrix-independent quantitative assignment. The method is validated in wild-type and knockout mammalian cell lines and in model organisms. SIL-CE-ESI-MS enables the accurate monitoring of InsPs and PP-InsPs arising from compartmentalized cellular synthesis pathways, by feeding cells with either [13C6]-myo-inositol or [13C6]-D-glucose. In doing so, we provide evidence for the existence of unknown inositol synthesis pathways in mammals, highlighting the potential of this method to dissect inositol phosphate metabolism and signalling.


Assuntos
Eletroforese Capilar , Fosfatos de Inositol/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Arabidopsis/metabolismo , Vias Biossintéticas , Dictyostelium/metabolismo , Células HCT116 , Humanos , Fosfatos de Inositol/química , Brotos de Planta/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
Chem Commun (Camb) ; 55(37): 5339-5342, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30973558

RESUMO

A tunable chemoenzymatic strategy provides access to the entire class of magic spot nucleotides and modified analogues. The approach combines chemoselective bisphosphorylations using phosphoramidites with regioselective ribonuclease T2 cyclo-phosphate hydrolysis, leading to flexible and simple gram-scale operations.


Assuntos
Endorribonucleases/metabolismo , Nucleotídeos/biossíntese , Biocatálise , Ciclização , Eletroforese em Gel de Poliacrilamida , Hidrólise , Nucleotídeos/química , Fosfatos/química , Fosfatos/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA