Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835413

RESUMO

Several immune and immunocompetent cells, including dendritic cells, macrophages, adipocytes, natural killer cells, T cells, and B cells, are significantly correlated with the complex discipline of oncology. Cytotoxic innate and adaptive immune cells can block tumor proliferation, and others can prevent the immune system from rejecting malignant cells and provide a favorable environment for tumor progression. These cells communicate with the microenvironment through cytokines, a chemical messenger, in an endocrine, paracrine, or autocrine manner. These cytokines play an important role in health and disease, particularly in host immune responses to infection and inflammation. They include chemokines, interleukins (ILs), adipokines, interferons, colony-stimulating factors (CSFs), and tumor necrosis factor (TNF), which are produced by a wide range of cells, including immune cells, such as macrophages, B-cells, T-cells, and mast cells, as well as endothelial cells, fibroblasts, a variety of stromal cells, and some cancer cells. Cytokines play a crucial role in cancer and cancer-related inflammation, with direct and indirect effects on tumor antagonistic or tumor promoting functions. They have been extensively researched as immunostimulatory mediators to promote the generation, migration and recruitment of immune cells that contribute to an effective antitumor immune response or pro-tumor microenvironment. Thus, in many cancers such as breast cancer, cytokines including leptin, IL-1B, IL-6, IL-8, IL-23, IL-17, and IL-10 stimulate while others including IL-2, IL-12, and IFN-γ, inhibit cancer proliferation and/or invasion and enhance the body's anti-tumor defense. Indeed, the multifactorial functions of cytokines in tumorigenesis will advance our understanding of cytokine crosstalk pathways in the tumor microenvironment, such as JAK/STAT, PI3K, AKT, Rac, MAPK, NF-κB, JunB, cFos, and mTOR, which are involved in angiogenesis, cancer proliferation and metastasis. Accordingly, targeting and blocking tumor-promoting cytokines or activating and amplifying tumor-inhibiting cytokines are considered cancer-directed therapies. Here, we focus on the role of the inflammatory cytokine system in pro- and anti-tumor immune responses, discuss cytokine pathways involved in immune responses to cancer and some anti-cancer therapeutic applications.


Assuntos
Neoplasias da Mama , Citocinas , Microambiente Tumoral , Feminino , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo
2.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203587

RESUMO

Inflammation is a vital protective response to threats, but it can turn harmful if chronic and uncontrolled. Key elements involve pro-inflammatory cells and signaling pathways, including the secretion of pro-inflammatory cytokines, NF-κB, reactive oxygen species (ROS) production, and the activation of the NLRP3 inflammasome. Ampelopsis grossedentata, or vine tea, contains dihydromyricetin (DHM) and myricetin, which are known for their various health benefits, including anti-inflammatory properties. Therefore, the aim of this study is to assess the impact of an extract of A. grossedentata leaves (50 µg/mL) on inflammation factors such as inflammasome, pro-inflammatory pathways, and macrophage polarization, as well as its antioxidant properties, with a view to combating the development of low-grade inflammation. Ampelopsis grossedentata extract (APG) significantly decreased ROS production and the secretion of pro-inflammatory cytokines (IFNγ, IL-12, IL-2, and IL-17a) in human leukocytes. In addition, APG reduced LPS/IFNγ -induced M1-like macrophage polarization, resulting in a significant decrease in the expression of the pro-inflammatory cytokines TNF-α and IL-6, along with a decrease in the percentage of M1 macrophages and an increase in M0 macrophages. Simultaneously, a significant decrease in NF-κB p65 phosphorylation and in the expression of inflammasome genes (NLRP3, IL-1ß and Caspase 1) was observed. The results suggest that Ampelopsis grossedentata could be a promising option for managing inflammation-related chronic diseases. Further research is needed to optimize dosage and administration methods.


Assuntos
Ampelopsis , Humanos , Antioxidantes/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos , NF-kappa B , Espécies Reativas de Oxigênio , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Citocinas , Extratos Vegetais/farmacologia
3.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830082

RESUMO

The traditional two-dimensional (2D) in vitro cell culture system (on a flat support) has long been used in cancer research. However, this system cannot be fully translated into clinical trials to ideally represent physiological conditions. This culture cannot mimic the natural tumor microenvironment due to the lack of cellular communication (cell-cell) and interaction (cell-cell and cell-matrix). To overcome these limitations, three-dimensional (3D) culture systems are increasingly developed in research and have become essential for tumor research, tissue engineering, and basic biology research. 3D culture has received much attention in the field of biomedicine due to its ability to mimic tissue structure and function. The 3D matrix presents a highly dynamic framework where its components are deposited, degraded, or modified to delineate functions and provide a platform where cells attach to perform their specific functions, including adhesion, proliferation, communication, and apoptosis. So far, various types of models belong to this culture: either the culture based on natural or synthetic adherent matrices used to design 3D scaffolds as biomaterials to form a 3D matrix or based on non-adherent and/or matrix-free matrices to form the spheroids. In this review, we first summarize a comparison between 2D and 3D cultures. Then, we focus on the different components of the natural extracellular matrix that can be used as supports in 3D culture. Then we detail different types of natural supports such as matrigel, hydrogels, hard supports, and different synthetic strategies of 3D matrices such as lyophilization, electrospiding, stereolithography, microfluid by citing the advantages and disadvantages of each of them. Finally, we summarize the different methods of generating normal and tumor spheroids, citing their respective advantages and disadvantages in order to obtain an ideal 3D model (matrix) that retains the following characteristics: better biocompatibility, good mechanical properties corresponding to the tumor tissue, degradability, controllable microstructure and chemical components like the tumor tissue, favorable nutrient exchange and easy separation of the cells from the matrix.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Neoplasias/metabolismo , Esferoides Celulares/metabolismo , Engenharia Tecidual , Microambiente Tumoral , Animais , Humanos
4.
Biomater Sci ; 11(9): 3308-3320, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36946175

RESUMO

Recently, many types of 3D culture systems have been developed to preserve the physicochemical environment and biological characteristics of the original tumors better than the conventional 2D monolayer culture system. There are various types of models belonging to this culture, such as the culture based on non-adherent and/or scaffold-free matrices to form the tumors. Agarose mold has been widely used to facilitate tissue spheroid assembly, as it is essentially non-biodegradable, bio-inert, biocompatible, low-cost, and low-attachment material that can promote cell spheroidization. As no studies have been carried out on the development of a fluorescent bicellular tumoroid mimicking ductal carcinoma in situ (DCIS) using human cell lines, our objective was to detail the practical approaches developed to generate this model, consisting of a continuous layer of myoepithelial cells (MECs) around a previously formed in situ breast tumor. The practical approaches developed to generate a bi-cellular tumoroid mimicking ductal carcinoma in situ (DCIS), consisting of a continuous layer of myoepithelial cells (MECs) around a previously formed in situ breast tumoroid. Firstly, the optimal steps and conditions of spheroids generation using a non-adherent agarose gel were described, in particular, the appropriate medium, seeding density of each cell type and incubation period. Next, a lentiviral transduction approach to achieve stable fluorescent protein expression (integrative system) was used to characterize the different cell lines and to track tumoroid generation through immunofluorescence, the organization of the two cell types was validated, specific merits and drawbacks were compared to lentiviral transduction. Two lentiviral vectors expressing either EGFP (Enhanced Green Fluorescent Protein) or m-Cherry (Red Fluorescent Protein) were used. Various rates of a multiplicity of infection (MOI) and multiple types of antibodies (anti-p63, anti-CK8, anti-Maspin, anti-Calponin) for immunofluorescence analysis were tested to determine the optimal conditions for each cell line. At MOI 40 (GFP) and MOI 5 (m-Cherry), the signals were almost homogeneously distributed in the cells which could then be used to generate the DCIS-like tumoroids. Images of the tumoroids in agarose molds were captured with a confocal microscope Micro Zeiss Cell Observer Spinning Disk or with IncuCyte® to follow the progress of the generation. Measurement of protumoral cytokines such as IL-6, IL8 and leptin confirmed their secretion in the supernatants, indicating that the properties of our cells were not altered. Finally the advantages and disadvantages of each fluorescent approach were discussed. This model could also be used for other solid malignancies to study the complex relationship between different cells such as tumor and myoepithelial cells in various microenvironments (inflammatory, adipose and tumor, obesity, etc.). Although, this new model is well established to monitor drug screening applications and perform pharmacokinetic and pharmacodynamic analyses.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/química , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Ductal de Mama/química , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Sefarose , Biomarcadores Tumorais , Microambiente Tumoral
5.
Biology (Basel) ; 11(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35205204

RESUMO

Tumor metastasis is a major cause of death in cancer patients. It involves not only the intrinsic alterations within tumor cells, but also crosstalk between these cells and components of the tumor microenvironment (TME). Tumorigenesis is a complex and dynamic process, involving the following three main stages: initiation, progression, and metastasis. The transition between these stages depends on the changes within the extracellular matrix (ECM), in which tumor and stromal cells reside. This matrix, under the effect of growth factors, cytokines, and adipokines, can be morphologically altered, degraded, or reorganized. Many cancers evolve to form an immunosuppressive TME locally and create a pre-metastatic niche in other tissue sites. TME and pre-metastatic niches include myofibroblasts, immuno-inflammatory cells (macrophages), adipocytes, blood, and lymphatic vascular networks. Several studies have highlighted the adipocyte-macrophage interaction as a key driver of cancer progression and dissemination. The following two main classes of macrophages are distinguished: M1 (pro-inflammatory/anti-tumor) and M2 (anti-inflammatory/pro-tumor). These cells exhibit distinct microenvironment-dependent phenotypes that can promote or inhibit metastasis. On the other hand, obesity in cancer patients has been linked to a poor prognosis. In this regard, tumor-associated adipocytes modulate TME through the secretion of inflammatory mediators, which modulate and recruit tumor-associated macrophages (TAM). Hereby, this review describes the cellular and molecular mechanisms that link inflammation, obesity, and cancer. It provides a comprehensive overview of adipocytes and macrophages in the ECM as they control cancer initiation, progression, and invasion. In addition, it addresses the mechanisms of tumor anchoring and recruitment for M1, M2, and TAM macrophages, specifically highlighting their origin, classification, polarization, and regulatory networks, as well as their roles in the regulation of angiogenesis, invasion, metastasis, and immunosuppression, specifically highlighting the role of adipocytes in this process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA