Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur Heart J ; 40(7): 598-603, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30357335

RESUMO

AIMS: The present study aimed to disentangle the risk of the three major transportation noise sources-road, railway, and aircraft traffic-and the air pollutants NO2 and PM2.5 on myocardial infarction (MI) mortality in Switzerland based on high quality/fine resolution exposure modelling. METHODS AND RESULTS: We modelled long-term exposure to outdoor road traffic, railway, and aircraft noise levels, as well as NO2 and PM2.5 concentration for each address of the 4.40 million adults (>30 years) in the Swiss National Cohort (SNC). We investigated the association between transportation noise/air pollution exposure and death due to MI during the follow-up period 2000-08, by adjusting noise [Lden(Road), Lden(Railway), and Lden(Air)] estimates for NO2 and/or PM2.5 and vice versa by multipollutant Cox regression models considering potential confounders. Adjusting noise risk estimates of MI for NO2 and/or PM2.5 did not change the hazard ratios (HRs) per 10 dB increase in road traffic (without air pollution: 1.032, 95% CI: 1.014-1.051, adjusted for NO2 and PM2.5: 1.034, 95% CI: 1.014-1.055), railway traffic (1.020, 95% CI: 1.007-1.033 vs. 1.020, 95% CI: 1.007-1.033), and aircraft traffic noise (1.025, 95% CI: 1.006-1.045 vs. 1.025, 95% CI: 1.005-1.046). Conversely, noise adjusted HRs for air pollutants were lower than corresponding estimates without noise adjustment. Hazard ratio per 10 µg/m³ increase with and without noise adjustment were 1.024 (1.005-1.043) vs. 0.990 (0.965-1.016) for NO2 and 1.054 (1.013-1.093) vs. 1.019 (0.971-1.071) for PM2.5. CONCLUSION: Our study suggests that transportation noise is associated with MI mortality, independent from air pollution. Air pollution studies not adequately adjusting for transportation noise exposure may overestimate the cardiovascular disease burden of air pollution.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Infarto do Miocárdio/mortalidade , Ruído dos Transportes/efeitos adversos , Adulto , Idoso , Aeronaves , Automóveis , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ferrovias , Fatores de Risco , Suíça
2.
Eur J Epidemiol ; 32(4): 307-315, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28280950

RESUMO

Most studies published to date consider single noise sources and the reported noise metrics are not informative about the peaking characteristics of the source under investigation. Our study focuses on the association between cardiovascular mortality in Switzerland and the three major transportation noise sources-road, railway and aircraft traffic-along with a novel noise metric termed intermittency ratio (IR), expressing the percentage contribution of individual noise events to the total noise energy from all sources above background levels. We generated Swiss-wide exposure models for road, railway and aircraft noise for 2001. Noise from the most exposed façade was linked to geocodes at the residential floor height for each of the 4.41 million adult (>30 y) Swiss National Cohort participants. For the follow-up period 2000-2008, we investigated the association between all noise exposure variables [Lden(Road), Lden(Rail), Lden(Air), and IR at night] and various cardiovascular primary causes of death by multipollutant Cox regression models adjusted for potential confounders including NO2. The most consistent associations were seen for myocardial infarction: adjusted hazard ratios (HR) (95% CI) per 10 dB increase of exposure were 1.038 (1.019-1.058), 1.018 (1.004-1.031), and 1.026 (1.004-1.048) respectively for Lden(Road), Lden(Rail), and Lden(Air). In addition, total IR at night played a role: HRs for CVD were non-significant in the 1st, 2nd and 5th quintiles whereas they were 1.019 (1.002-1.037) and 1.021 (1.003-1.038) for the 3rd and 4th quintiles. Our study demonstrates the impact of all major transportation noise sources on cardiovascular diseases. Mid-range IR levels at night (i.e. between continuous and highly intermittent) are potentially more harmful than continuous noise levels of the same average level.


Assuntos
Doenças Cardiovasculares/mortalidade , Ruído dos Transportes/estatística & dados numéricos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Suíça/epidemiologia
3.
Environ Int ; 123: 399-406, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30622064

RESUMO

BACKGROUND: Epidemiological research on transportation noise uses different exposure assessment strategies based on façade point estimates or regulatory noise maps. The degree of exposure measurement error and subsequent potentially biased risk estimates related to exposure definition is unclear. We aimed to evaluate associations between transportation noise exposure and myocardial infarction (MI) mortality considering: assumptions about residential floor, façade point selection (loudest, quietest, nearest), façade point vs. noise map estimates, and influence of averaging exposure at coarser spatial scales (e.g. in ecological health studies). METHODS: Lden from the façade points were assigned to >4 million eligible adults in the Swiss National Cohort for the best match residential floor (reference), middle floor, and first floor. For selected floors, the loudest and quietest exposed façades per dwelling, plus the nearest façade point to the residential geocode, were extracted. Exposure was also assigned from 10 × 10 m noise maps, using "buffers" from 50 to 500 m derived from the maps, and by aggregating the maps to larger areas. Associations between road traffic and railway noise and MI mortality were evaluated by multi-pollutant Cox regression models, adjusted for aircraft noise, NO2 and socio-demographic confounders, following individuals from 2000 to 2008. Bias was calculated to express differences compared to the reference. RESULTS: Hazard ratios (HRs) for the best match residential floor were 1.05 (1.02-1.07) and 1.03 (1.01-1.05) per IQR (11.3 and 15.0 dB) for road traffic and railway noise, respectively. In most situations, comparing the alternative exposure definitions to this reference resulted in attenuated HRs. For example, assuming everyone resided on the middle or everyone on first floor introduced little bias (%Bias in excess risk: -1.9 to 4.4 road traffic and -4.4 to 10.7 railway noise). Using the noise grids generated a bias of approximately -26% for both sources. Averaging the maps at a coarser spatial scale led to bias from -19.4 to -105.1% for road traffic and 17.6 to -34.3% for railway noise and inflated the confidence intervals such that some HRs were no longer statistically significant. CONCLUSION: Changes in spatial scale introduced more bias than changes in residential floor. Use of noise maps to represent residential exposure may underestimate noise-induced health effects, in particular for small-scale heterogeneously distributed road traffic noise in urban settings.


Assuntos
Exposição Ambiental/análise , Infarto do Miocárdio/mortalidade , Ruído dos Transportes/efeitos adversos , Adulto , Aeronaves , Estudos de Coortes , Feminino , Habitação , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/etiologia , Modelos de Riscos Proporcionais , Medição de Risco , Suíça/epidemiologia , Meios de Transporte
4.
Artigo em Inglês | MEDLINE | ID: mdl-29346318

RESUMO

Noise exposure prediction models for health effect studies normally estimate free field exposure levels outside. However, to assess the noise exposure inside dwellings, an estimate of indoor sound levels is necessary. To date, little field data is available about the difference between indoor and outdoor noise levels and factors affecting the damping of outside noise. This is a major cause of uncertainty in indoor noise exposure prediction and may lead to exposure misclassification in health assessments. This study aims to determine sound level differences between the indoors and the outdoors for different window positions and how this sound damping is related to building characteristics. For this purpose, measurements were carried out at home in a sample of 102 Swiss residents exposed to road traffic noise. Sound pressure level recordings were performed outdoors and indoors, in the living room and in the bedroom. Three scenarios-of open, tilted, and closed windows-were recorded for three minutes each. For each situation, data on additional parameters such as the orientation towards the source, floor, and room, as well as sound insulation characteristics were collected. On that basis, linear regression models were established. The median outdoor-indoor sound level differences were of 10 dB(A) for open, 16 dB(A) for tilted, and 28 dB(A) for closed windows. For open and tilted windows, the most relevant parameters affecting the outdoor-indoor differences were the position of the window, the type and volume of the room, and the age of the building. For closed windows, the relevant parameters were the sound level outside, the material of the window frame, the existence of window gaskets, and the number of windows.


Assuntos
Materiais de Construção , Habitação , Ruído dos Transportes/prevenção & controle , Exposição Ambiental , Humanos , Modelos Lineares , Suíça
5.
Int J Hyg Environ Health ; 221(3): 556-563, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29482991

RESUMO

BACKGROUND: Most epidemiological noise studies consider 24 h average noise exposure levels. Our aim was to exploratively analyze the impact of noise exposure at different time windows during day and night on cardiovascular mortality. METHODS: We generated Switzerland-wide exposure models for road traffic, railway and aircraft noise for different time windows for the year 2001. Combined noise source equivalent continuous sound levels (Leq) for different time windows at the most exposed façade were assigned to each of the 4.41 million Swiss National Cohort adult participants. Follow-up period was from 2000 to 2008. Hazard ratios (HR) of noise effects on various cardiovascular primary causes of death were computed by Cox regression models adjusted for potential confounders and NO2 levels. RESULTS: For most cardiovascular causes of death we obtained indications for a diurnal pattern. For ischemic heart disease the highest HR was observed for the core night hours from 01 h to 05 h (HR per standard deviation of Leq: 1.025, 95% CI: 1.016-1.034) and lower HR for the daytime 07 h to 19 h (1.018 [1.009-1.028]). Heart failure and daytime Leq yielded the highest HR (1.047 [1.027-1.068]). CONCLUSION: For acute cardiovascular diseases, nocturnal intermittent noise exposure tended to be more relevant than daytime exposure, whereas it was the opposite for chronic conditions such as heart failure most strongly associated with continuous daytime noise. This suggests that for acute diseases sleep is an important mediator for health consequences of transportation noise.


Assuntos
Aeronaves , Doenças Cardiovasculares/mortalidade , Exposição Ambiental/efeitos adversos , Veículos Automotores , Ruído dos Transportes/efeitos adversos , Ferrovias , Adulto , Idoso , Causas de Morte , Estudos de Coortes , Feminino , Insuficiência Cardíaca/mortalidade , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Ruído , Modelos de Riscos Proporcionais , Fatores de Risco , Suíça , Meios de Transporte
6.
J Expo Sci Environ Epidemiol ; 26(6): 575-585, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26350982

RESUMO

Most environmental epidemiology studies model health effects of noise by regressing on acoustic exposure metrics that are based on the concept of average energetic dose over longer time periods (i.e. the Leq and related measures). Regarding noise effects on health and wellbeing, average measures often cannot satisfactorily predict annoyance and somatic health effects of noise, particularly sleep disturbances. It has been hypothesized that effects of noise can be better explained when also considering the variation of the level over time and the frequency distribution of event-related acoustic measures, such as for example, the maximum sound pressure level. However, it is unclear how this is best parametrized in a metric that is not correlated with the Leq, but takes into account the frequency distribution of events and their emergence from background. In this paper, a calculation method is presented that produces a metric which reflects the intermittency of road, rail and aircraft noise exposure situations. The metric termed intermittency ratio (IR) expresses the proportion of the acoustical energy contribution in the total energetic dose that is created by individual noise events above a certain threshold. To calculate the metric, it is shown how to estimate the distribution of maximum pass-by levels from information on geometry (distance and angle), traffic flow (number and speed) and single-event pass-by levels per vehicle category. On the basis of noise maps that simultaneously visualize Leq, as well as IR, the differences of both metrics are discussed.


Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Ruído dos Transportes , Acústica , Humanos , Mapas como Assunto , Modelos Teóricos , Estresse Psicológico , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA