Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Photochem Photobiol Sci ; 20(5): 699-714, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33945145

RESUMO

Mesenchymal stem cells (MSCs) and photobiomodulation (PBM) both offer significant therapeutic potential in regenerative medicine. MSCs have the ability to self-renew and differentiate; giving rise to multiple cellular and tissue lineages that are utilised in repair and regeneration of damaged tissues. PBM utilises light energy delivered at a range of wavelengths to promote wound healing. The positive effects of light on MSC proliferation are well documented; and recently, several studies have determined the outcomes of PBM on mineralised tissue differentiation in MSC populations. As PBM effects are biphasic, it is important to understand the underlying cellular regulatory mechanisms, as well as, provide accurate details of the irradiation conditions, to optimise and standardise outcomes. This review article focuses on the use of red, near-infra-red (R/NIR) and blue wavelengths to promote the mineralisation potential of MSCs; and also reports on the possible molecular mechanisms which underpin transduction of these effects. A variety of potential photon absorbers have been identified which are reported to mediate the signalling mechanisms, including respiratory chain enzymes, flavins, and cryptochromes. Studies report that R/NIR and blue light stimulate MSC differentiation by enhancing respiratory chain activity and increasing reactive oxygen species levels; however, currently, there are considerable variations between irradiation parameters reported. We conclude that due to its non-invasive properties, PBM may, following optimisation, provide an efficient therapeutic approach to clinically support MSC-mediated hard tissue repair. However, to optimise application, further studies are required to identify appropriate light delivery parameters, as well as elucidate the photo-signalling mechanisms involved.


Assuntos
Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais/metabolismo , Humanos , Raios Infravermelhos , Células-Tronco Mesenquimais/patologia
2.
PLoS Pathog ; 13(11): e1006760, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29186191

RESUMO

Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our findings highlight the composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections.


Assuntos
Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Lipopolissacarídeos/metabolismo , Vesículas Transportadoras/microbiologia , Parede Celular/química , Parede Celular/metabolismo , Endocitose , Bactérias Gram-Negativas/química , Infecções por Bactérias Gram-Negativas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Cinética , Lipopolissacarídeos/química , Vesículas Transportadoras/metabolismo , Fatores de Virulência/metabolismo
3.
Photochem Photobiol Sci ; 18(8): 1877-1909, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31183484

RESUMO

Photobiomodulation (PBM) describes the application of light at wavelengths ranging from 400-1100 nm to promote tissue healing, reduce inflammation and promote analgesia. Traditionally, red and near-infra red (NIR) light have been used therapeutically, however recent studies indicate that other wavelengths within the visible spectrum could prove beneficial including blue and green light. This review aims to evaluate the literature surrounding the potential therapeutic effects of PBM with particular emphasis on the effects of blue and green light. In particular focus is on the possible primary and secondary molecular mechanisms of PBM and also evaluation of the potential effective parameters for application both in vitro and in vivo. Studies have reported that PBM affects an array of molecular targets, including chromophores such as signalling molecules containing flavins and porphyrins as well as components of the electron transport chain. However, secondary mechanisms tend to converge on pathways induced by increases in reactive oxygen species (ROS) production. Systematic evaluation of the literature indicated 72% of publications reported beneficial effects of blue light and 75% reported therapeutic effects of green light. However, of the publications evaluating the effects of green light, reporting of treatment parameters was uneven with 41% failing to report irradiance (mW cm-2) and 44% failing to report radiant exposure (J cm-2). This review highlights the potential of PBM to exert broad effects on a range of different chromophores within the body, dependent upon the wavelength of light applied. Emphasis still remains on the need to report exposure and treatment parameters, as this will enable direct comparison between different studies and hence enable the determination of the full potential of PBM.

4.
Lasers Med Sci ; 31(4): 789-809, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26964800

RESUMO

Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of 'dose,' and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of 'best practice' in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014-March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73%) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3%), light source type (8%), power (41%), pulse frequency (52%), beam area (40%), irradiance (43%), exposure time (16%), radiant energy (74%) and fluence (16%). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement methods and all ten key parameters: wavelength, power, irradiation time, beam area (at the skin or culture surface; this is not necessarily the same size as the aperture), radiant energy, radiant exposure, pulse parameters, number of treatments, interval between treatments and anatomical location. Inclusion of these parameters will improve the information available to compare and contrast study outcomes and improve repeatability, reliability of studies.


Assuntos
Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Humanos , Doses de Radiação , Radiometria , Reprodutibilidade dos Testes , Pele/efeitos da radiação
5.
Eur J Prosthodont Restor Dent ; 24(3): 122-129, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28509503

RESUMO

A majority of dental materials are manufactured by companies who have experience in the field. However, a number of "own label" materials have become available, principally marketed by distributors and other companies with little or no experience in the field. These materials are attractive because of their reduced cost, but they may have no research on which clinicians might base their potential performance. It is therefore the purpose of this work to compare the performance of different batches of a number of "own-label" dental materials with a similar number from manufacturers with experience in the field, using a variety of laboratory test regimes which include filler determination, degree of conversion, flexural strength and flexural modulus, in order to evaluate key material properties. The results indicated that own-label dental resin composites produced similar results to materials from established companies in terms of flexural strength characteristics and degree of conversion. However, a greater batch-to-batch variation in several mechanical and physical properties of the own-label materials was noted.


Assuntos
Resinas Acrílicas , Resinas Compostas , Materiais Dentários , Poliuretanos , Teste de Materiais , Fenômenos Mecânicos , Fenômenos Físicos
6.
Biomater Investig Dent ; 11: 40308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645925

RESUMO

Harnessing the power of light and its photonic energy is a powerful tool in biomedical applications. Its use ranges from biomaterials processing and fabrication of polymers to diagnostics and therapeutics. Dental light curable materials have evolved over several decades and now offer very fast (≤ 10 s) and reliable polymerization through depth (4-6 mm thick). This has been achieved by developments on two fronts: (1) chemistries with more efficient light absorption characteristics (camphorquinone [CQ], ~30 L mol-1 cm1 [ʎmax 470 nm]; monoacylphosphine oxides [MAPO], ~800 L mol-1 cm-1 [ʎmax 385 nm]; bisacylphosphine oxide [BAPO], ~1,000 L mol-1 cm-1 [ʎmax 385 nm]) as well mechanistically efficient and prolonged radical generation processes during and after light irradiation, and; (2) introducing light curing technologies (light emitting diodes [LEDs] and less common lasers) with higher powers (≤ 2 W), better spectral range using multiple diodes (short: 390-405 nm; intermediate: 410-450 nm; and long: 450-480 nm), and better spatial power distribution (i.e. homogenous irradiance). However, adequate cure of materials falls short for several reasons, including improper selection of materials and lights, limitations in the chemistry of the materials, and limitations in delivering light through depth. Photonic energy has further applications in dentistry which include transillumination for diagnostics, and therapeutic applications that include photodynamic therapy, photobiomodulation, and photodisinfection. Light interactions with materials and biological tissues are complex and it is important to understand the advantages and limitations of these interactions for successful treatment outcomes. This article highlights the advent of photonic technologies in dentistry, its applications, the advantages and limitations, and possible future developments.

7.
Dent Mater ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38945741

RESUMO

OBJECTIVE: This study investigated the influence of photoinitiator types on degree of conversion (DC), rate of polymerization (RP), flexural strength (FS), flexural modulus (FM), and light transmittance (LT) of filled and unfilled light-curable resin cements through different thicknesses and shades of lithium disilicate ceramics. METHODS: Lithium disilicate ceramic discs (IPS Emax Press, background [0.0], 0.5, 1.0, 2.0, 3.0, and 4.0 mm, shades A1 and BL3) were prepared. Experimental resin-based cements [TEGDMA/BisGMA (50/50 mass%)] were prepared using either camphorquinone (CQ)/amine (0.44/1.85 mol%) or TPO (0.44 mol%)], and a micro and nanofiller loads of nil (unfilled); 40/10 mass%; and 50/10 mass%). Resin cements (0.2 mm thick) were placed on the lower surface of the ceramic specimens and light-activated for 30 s from the upper surface using a Bluephase Style curing light (exitance at tip: 1236 mW/cm2 ± 1.20). LT and distribution of irradiance through the ceramics were measured using a UV-vis spectrometer and a beam profile camera, respectively (n = 3). The DC and RP were measured in real-time using mid infrared spectroscopy in attenuated total reflectance (ATR) mode (n = 3). FS and FM were measured using a universal testing machine (n = 5). Statistical analyses were performed on LT, DC, RP, FS, and FM data using a general linear model, and supplementary ANOVA and post hoc Tukey multiple comparison test were also performed (α = .05). RESULTS: Thicknesses, shades, photoinitiator type, and fillers load significantly influenced the optical and mechanical characteristics of the resin-based materials (p < 0.05). The BL3 shade ceramic provided higher values of DC, RP, FS, FM, and LT compared with the A1 shade (p < 0.05). Increasing ceramic thickness decreased the properties of the resin-based materials (p < 0.05). Generally, TPO improved mechanical properties of the resin cement compared with CQ (p < 0.05). SIGNIFICANCE: The luting process of indirect restorations may be improved by using high molar absorptivity, more reactive, and more efficient photoinitiators such as TPO, as opposed to conventional CQ. The use of such initiator may allow the placement of thicker and more opaque indirect restorations.

8.
Dent Mater ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908961

RESUMO

OBJECTIVES: The study aimed to assess the impact of diphenyliodonium hexafluorophosphate (DPI) on the physicochemical properties of experimental resin composites (ECRs) featuring reduced concentrations of camphorquinone (CQ)/amine. METHODS: Five concentrations of CQ (0.125, 0.25, 0.5, 0.75, and 1 mol%) with dimethylaminoethyl amine benzoate (EDAB) in a 1:2 mol% ratio (CQ:EDAB) were incorporated into a 50:50 mass% monomer blend of bisphenol glycidyl methacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). An additional 5 groups with the same CQ:EDAB concentrations had 0.5 mol% DPI added. Each resin group contained 60 wt% of 0.7 µm barium-alumino-silicate glass. Light transmission (n = 3), real-time degree of polymerization (n = 3), temperature change during polymerization (n = 5), polymerization shrinkage strain (n = 3), flexural strength, and modulus (n = 12), as well as water sorption and solubility (n = 5), were evaluated. Data were analyzed using two-way ANOVA and Tukey's post-hoc test (α = 0.05). RESULTS: Light transmission was reduced in groups containing 0.125 and 0.25 mol% of CQ without DPI. DPI increased temperature, degree and rate of polymerization, despite the reduction in CQ/amine concentration. Additionally, there was an increase in polymerization shrinkage strain, flexural strength and modulus, and a reduction in water sorption and solubility in ECRs with DPI, even with lower concentrations of CQ/EDAB. SIGNIFICANCE: DPI improved the assessed properties of composites across various concentrations of CQ/EDAB, showing the benefit of reducing the quantity of CQ used without compromising the properties and curing of the resin composites.

9.
J Neurotrauma ; 40(3-4): 210-227, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35698294

RESUMO

Photobiomodulation (PBM) is a therapeutic modality that has gained increasing interest in neuroscience applications, including acute traumatic brain injury (TBI). Its proposed mechanisms for therapeutic effect when delivered to the injured brain include antiapoptotic and anti-inflammatory effects. This systematic review summarizes the available evidence for the value of PBM in improving outcomes in acute TBI and presents a meta-analysis of the pre-clinical evidence for neurological severity score (NSS) and lesion size in animal models of TBI. A systematic review of the literature was performed, with searches and data extraction performed independently in duplicate by two authors. Eighteen published articles were identified for inclusion: seventeen pre-clinical studies of in vivo animal models and one clinical study in human patients. The available human study supports safety and feasibility of PBM in acute moderate TBI. For pre-clinical studies, meta-analysis for NSS and lesion size were found to favor intervention versus control. Subgroup analysis based on PBM parameter variables for these outcomes was performed. Favorable parameters were identified as: wavelengths in the region of 665 nm and 810 nm; time to first administration of PBM ≤4 h; total number of daily treatments ≤3. No differences were identified between pulsed and continuous wave modes or energy delivery. Mechanistic substudies within included in vivo studies are presented and were found to support hypotheses of antiapoptotic, anti-inflammatory, and pro-proliferative effects, and a modulation of cellular metabolism. This systematic review provides substantial meta-analysis evidence of the benefits of PBM on functional and histological outcomes of TBI in in vivo mammalian models. Study design and PBM parameters should be closely considered for future human clinical studies.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Terapia com Luz de Baixa Intensidade , Animais , Humanos , Lesões Encefálicas Traumáticas/radioterapia , Encéfalo , Mamíferos
10.
PLoS One ; 17(3): e0264533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239693

RESUMO

Apoptotic cell death within the brain represents a significant contributing factor to impaired post-traumatic tissue function and poor clinical outcome after traumatic brain injury. After irradiation with light in the wavelength range of 600-1200 nm (photobiomodulation), previous investigations have reported a reduction in apoptosis in various tissues. This study investigates the effect of 660 nm photobiomodulation on organotypic slice cultured hippocampal tissue of rats, examining the effect on apoptotic cell loss. Tissue optical Raman spectroscopic changes were evaluated. A significantly higher proportion of apoptotic cells 62.8±12.2% vs 48.6±13.7% (P<0.0001) per region were observed in the control group compared with the photobiomodulation group. After photobiomodulation, Raman spectroscopic observations demonstrated 1440/1660 cm-1 spectral shift. Photobiomodulation has the potential for therapeutic utility, reducing cell loss to apoptosis in injured neurological tissue, as demonstrated in this in vitro model. A clear Raman spectroscopic signal was observed after apparent optimal irradiation, potentially integrable into therapeutic light delivery apparatus for real-time dose metering.


Assuntos
Lesões Encefálicas Traumáticas , Terapia com Luz de Baixa Intensidade , Animais , Apoptose , Encéfalo , Lesões Encefálicas Traumáticas/metabolismo , Hipocampo/metabolismo , Terapia com Luz de Baixa Intensidade/métodos , Ratos , Análise Espectral Raman
11.
PLoS One ; 16(1): e0245830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33513153

RESUMO

This study investigated the accuracy of sixteen models of commercial dental radiometers (DR) in measuring the output of thirty-eight LED light curing units (LCUs) compared with a 'gold standard' laboratory-grade spectrometer integrating-sphere (IS) assembly. Nineteen Type I (fiber-bundle light guide) and nineteen Type II (light source in head) LED LCUs were tested, some using different output modes and light guides, resulting in 61 test subsets per radiometer. Gold standard (GS) output measurements (n = 3) were taken using the IS and confirmed with two types of laboratory-grade power meter (PowerMax-Pro 150 HD and PM10-19C; Coherent). One DR (Bluephase Meter II, Ivoclar; BM II) allowed power (mW) as well as irradiance (mW/cm2) recordings. Irradiance readings (n = 3) for each DR/LCU were compared with the IS derived irradiance. Individual LCU irradiance values were normalized against IS data. The GS method yielded reproducible data with a 0.4% pooled coefficient of variation for the LCUs. Mean power values ranged from 0.19 W to 2.40 W. Overall power values for the laboratory-grade power meters were within 5% of GS values. Individual LCU/DR normalized irradiance values ranged from 7% to 535% of the GS; an order of magnitude greater than previous reports. BM II was the only radiometer to average within 20% of normalized pooled GS irradiance values, whereas other radiometers differed by up to 85%. Ten radiometers failed to provide any reading for 1 LCU. When tested with the PowerMax-Pro in high speed (20 kHz) mode, eight LCUs demonstrated pulsing outputs undetectable at the standard (10 Hz) data acquisition rate. Sufficient light exposure is critical for the successful curing of dental resin-based materials. Substantial discrepancies may occur between actual and estimated radiometric data using current DRs. More accurate DRs need to be developed. Manufacturers' accuracy claims for DRs should specify compatible LCUs and testing parameters.


Assuntos
Lâmpadas de Polimerização Dentária/normas , Radiometria/instrumentação , Radiometria/normas , Reprodutibilidade dos Testes
12.
J Photochem Photobiol B ; 215: 112123, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33454542

RESUMO

The direct application of light for photo-disinfection potentially provides a safe and novel modality to inhibit or eliminate cariogenic bacteria residing upon and within dentine. This study aimed to both; characterize the pattern of transmission of 405 nm light through molar dentine at different tooth locations, as well as, determine the irradiation parameters that are antibacterial for Streptococcus mutans under various growth conditions, including lawns, planktonic cultures, and biofilms. To determine the amount of light (405 nm) transmitted at different anatomical tooth locations; irradiance values were recorded after blue light (470-4054 mW/cm2) had traversed through occlusal, oblique, and buccal dentine sections; and three thicknesses - 1, 2 and 3 mm were investigated. To determine tubular density; scanning electron micrographs from 2 mm outer (dentine-enamel junction) and inner (pulp) dentine sections were analysed. For photo-disinfection studies; S. mutans was irradiated using the same 405 nm wavelength light at a range of doses (110-1254 J/cm2) in both biofilm and planktonic cultures. The inhibitory effect of the irradiation on bacterial lawns was compared by measuring zones of inhibition; and for planktonic cultures both spectrophotometric and colony forming unit (CFU) assays were performed. A live/dead staining assay was utilised to determine the effect of irradiation on bacterial viability in mature biofilms. Data indicated that increasing dentine thickness decreased light transmission significantly irrespective of its orientation. Occlusal and oblique samples exhibited higher transmission compared with buccal dentine. Oblique dentine 405 nm light transmission was comparable with that of occlusal dentine independent of section thickness. An increased tubule density directly positively correlated with light transmission. Irradiation at 405 nm inhibited S. mutans growth in both biofilm and planktonic cultures and a dose response relationship was observed. Irradiation at doses of 340 and 831 J/cm2 led to significant reductions in bacterial growth and viability; as determined by CFU counting and live/dead staining. Data suggests that phototherapy approaches utilising a 405 nm wavelength have therapeutic potential to limit cariogenic bacterial infections both at the surface and within dentine.


Assuntos
Dentina/efeitos da radiação , Desinfecção/métodos , Luz , Adulto , Cor , Dentina/microbiologia , Feminino , Humanos , Masculino , Viabilidade Microbiana/efeitos da radiação , Streptococcus mutans/fisiologia , Streptococcus mutans/efeitos da radiação , Adulto Jovem
13.
Sci Rep ; 11(1): 4666, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633128

RESUMO

In root canal therapy, irrigating solutions are employed to eliminate the bacterial load and also prepare dentin for sealer interaction. The aim of this research was to assess how irrigating solutions employed on their own or in sequence affected the tooth structure. The best way to prepare the tooth for obturation using hydraulic calcium silicate cement (HCSC) sealers and gutta-percha, thus guiding clinicians on a matched irrigation-obturation strategy for optimized root canal treatment was investigated. The effect of irrigating solutions on dentine was investigated by assessing changes in dentin microhardness, ultrastructure and mineral content, organic/inorganic matter, surface roughness and Young's modulus. The interaction of four root canal sealers with the dentin was analysed by assessing the changes in microhardness of the dentin after sealer placement and also the sealer to dentin interface by scanning electron and confocal laser microscopy. The irrigating solutions damaged the dentin irreversibly both when used on their own and in combination. The best sequence involved sodium hypochlorite followed by chelator and a final rinse with sodium hypochlorite and obturation using HCSC sealers that enabled the restoration of dentin properties. The HCSC sealers did not rely on chelator irrigating solutions for a good material adaptation to dentin.


Assuntos
Obturação do Canal Radicular , Tratamento do Canal Radicular , Irrigação Terapêutica , Humanos , Teste de Materiais
14.
Dent Mater ; 36(9): 1183-1189, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505536

RESUMO

OBJECTIVE: Warm vertical compaction of gutta-percha is a technique that is used by most specialists for root canal obturation. The sealers currently available exhibit irriversible chemical changes when heated. New biologically active sealers that do not sustain irreversible changes when heated are an attractive alternative to be used with warm vertical compaction obturation technique. The aim of this study was to measure the heat generated by warm vertical compactors inside the root canal, characterize a newly developed root canal sealer at different temperatures and verify its suitability at the actual temperature window used clinically. METHODS: The typical temperatures generated by two heat carriers in a root canal were assessed by thermocouples. Two premixed root canal sealers TotalFill BC and HiFlow BC (FKG, Switzerland) were allowed to set and they were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD) immediately after setting and by XRD after 28 days in physiological solution. The ion leaching in solution was assessed by inductively coupled plasma (ICP). The organic component was extracted in acetone and assessed by Fourier transform infrared spectroscopy (FT-IR) for both the unset sealer and sealer subjected to different temperatures. The heat profiles of both sealers were investigated by FT-IR and thermographic analysis. RESULTS: None of the devices tested achieved the temperatures set on the dial. The highest temperatures were coronal followed by apical for both devices. The sealers were identical except for the vehicle. The inorganic components included tricalcium silicate, dicalcium silicate and zirconium oxide. No calcium hydroxide was produced by any of the sealers after immersion in physiological solution but calcium was released in solution. The chemistry of both sealers was modified when heated but both recovered when cooled. SIGNIFICANCE: The heat carriers were unreliable and the heat generated inside the canal was not the same as the temperature set on the dial. Since both sealers had identical chemistry save for minimal modifications to the organic component and were both resistant to heat, TotalFill BC sealer is recommended for use with warm vertical compaction technique as it is cheaper and as effective as the HiFlow.


Assuntos
Materiais Restauradores do Canal Radicular , Compostos de Cálcio , Resinas Epóxi , Guta-Percha , Temperatura Alta , Teste de Materiais , Obturação do Canal Radicular , Silicatos , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Mech Behav Biomed Mater ; 110: 103875, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32957185

RESUMO

The chemistry of resin-based dental adhesives is critical for its interaction with dental tissues and long-term bonding stability. Changes in dental adhesives composition influences the materials' key physical-chemical properties, such as rate and degree of conversion, water sorption, solubility, flexural strength and modulus, and cohesive strength and improves the biocompatibility to dental tissues. Maintaining a suitable reactivity between photoinitiators and monomers is important for optimal properties of adhesive systems, in order to enable adequate polymerisation and improved chemical, physical and biological properties. The aim of this article is to review the current state-of-the-art of dental adhesives, and their chemical composition and characteristics that influences the polymerisation reaction and subsequent materials properties and performance.


Assuntos
Colagem Dentária , Adesivos Dentinários , Adesivos , Resinas Compostas , Cimentos Dentários , Dentina , Teste de Materiais , Cimentos de Resina
16.
Dent Mater ; 36(10): 1282-1288, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690220

RESUMO

OBJECTIVE: To evaluate the influence of different co-initiators (diphenyliodonium hexafluorophosphate - DPI - and bis(4-methyl phenyl)iodonium hexafluorophosphate - BPI) on chemical and mechanical properties of resins. METHODS: Nine experimental resins (50% Bis-GMA and 50% TEGDMA, w/w) with 60 wt% filler particles were formulated. The initiating system used was camphorquinone (CQ-1 mol%) and ethyl dimethylaminobenzoate (EDAB-2 mol%). Experimental groups were established according to DPI and BPI quantities (0.25, 0.5, 0.75, and 1 mol%). The control group was a resin containing only CQ-EDAB. Light transmission through the resin during polymerisation was analysed with a UV-vis spectrophotometer. Real-time polymerisation of the systems was evaluated using an FTIR spectrometer. Real-time polymerisation shrinkage strain was evaluated, and the flexural strength and modulus of materials were obtained by 3-point bending. Experimental groups were statistically analysed by Analysis of Variance and Tukey's test (α = 0.05). Dunnett's test was applied to compare experimental groups with control. RESULTS: Light transmission rapidly increased initially for resins containing DPI or BPI. After 30 s cure, the irradiance on the lower surface of resin specimens was similar for all groups. After 10 s of light irradiation, groups containing DPI and BPI had higher conversion than the control. However, conversion after 120 s post-irradiation was similar for all groups. The rate of polymerisation, shrinkage strain, and the maximum strain rate were higher for groups containing DPI/BPI. The use of iodonium salts increased the flexural strength and flexural moduli of resins. SIGNIFICANCE: DPI and BPI increased resin reactivity similarly. Increased rate of polymerization influenced light transmission through the resin in the first seconds of polymerisation and increased resin shrinkage and rate of shrinkage, as well as flexural strength and moduli.


Assuntos
Compostos de Bifenilo , Oniocompostos , Bis-Fenol A-Glicidil Metacrilato , Cânfora/análogos & derivados , Resinas Compostas , Teste de Materiais , Metacrilatos , Polietilenoglicóis , Polimerização , Ácidos Polimetacrílicos
17.
J Biophotonics ; 12(6): e201800411, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30701682

RESUMO

OBJECTIVE: Photobiomodulation (PBM) is the application of light to promote tissue healing. Current indications suggest PBM induces its beneficial effects in vivo through upregulation of mitochondrial activity. However, how mitochondrial content influences such PBM responses have yet to be evaluated. Hence, the current study assessed the biological response of cells to PBM with varying mitochondrial contents. METHODS: DNA was isolated from myoblasts and myotubes (differentiated myoblasts), and mitochondrial DNA (mtDNA) was amplified and quantified using a microplate assay. Cells were seeded in 96-wellplates, incubated overnight and subsequently irradiated using a light-emitting diode array (400, 450, 525, 660, 740, 810, 830 and white light, 24 mW/cm2 , 30-240 seconds, 0.72-5.76J/cm2 ). The effects of PBM on markers of mitochondrial activity including reactive-oxygen-species and real-time mitochondrial respiration (Seahorse XFe96) assays were assessed 8 hours post-irradiation. Datasets were analysed using general linear model followed by one-way analysis of variance (and post hoc-Tukey tests); P = 0.05). RESULTS: Myotubes exhibited mtDNA levels 86% greater than myoblasts (P < 0.001). Irradiation of myotubes at 400, 450 or 810 nm induced 53%, 29% and 47% increases (relative to non-irradiated control) in maximal respiratory rates, respectively (P < 0.001). Conversely, irradiation of myoblasts at 400 or 450 nm had no significant effect on maximal respiratory rates. CONCLUSION: This study suggests that mitochondrial content may influence cellular responses to PBM and as such explain the variability of PBM responses seen in the literature.


Assuntos
Terapia com Luz de Baixa Intensidade , Mitocôndrias/efeitos da radiação , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Animais , Linhagem Celular , Camundongos , Mitocôndrias/metabolismo , Tamanho Mitocondrial/efeitos da radiação
18.
J Mech Behav Biomed Mater ; 98: 71-78, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31203099

RESUMO

To evaluate the effects of Type I and Type II photoinitiator systems on curing efficiency, degree of conversion (DC) and chemico-physical properties of resin based materials. A comonomer base containing 50%wt 2.2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (bis-GMA) and 50%wt triethyleneglycol dimethacrylate (TEGDMA) was formulated with either 0.5 or 1mol% of Type II camphoroquinone (CQ), Type I monoacylphosphine oxide (MAPO) or bis-acylphosphine oxide (BAPO) photoinitiators. The Type II system was either a binary (1: 2 CQ:amine) or ternary system (1: 2 CQ:amine + 0.5 mol% DPI). Degree and rate of polymerization was measured by Fourier Transform Infrared Spectroscopy (FTIR). Knoop micro-hardness prior to and following ethanol immersion was assessed. Flexural strength and modulus was measured under three-point bend test. Water sorption and solubility was also evaluated. The photoinitiator absorption spectra and the total absorbed energy per unit volume (Eabs) for 0.5mol% photoinitiator in each material was calculated. Despite the reduced total absorbed energy per unit volume for CQ based systems, ternary Type II system significantly improved curing efficiency (P < 0.05) compared to both Type I photoinitiators and degree of conversion compared to MAPO only, whilst exhibiting comparable mechanical and physical properties compared to both Type I based materials at equivalent molar concentrations of photoinitiator (P > 0.05). Ternary Type II systems is an efficient alternative to improve the polymerization of resin materials, promoting similar or even better properties than Type I initiators. DPI can increase the reactivity of CQ systems and promote polymerization rates superior than Type I photoinitiators.


Assuntos
Processos Fotoquímicos , Polimerização , Resinas Sintéticas/química , Cinética , Solubilidade
19.
Dent Mater ; 34(5): 695-710, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29549967

RESUMO

Spatial and temporal control is a key advantage for placement and rapid setting of light-activated resin composites. Conventionally, placement of multiple thin layers (<2mm) reduces the effect of light attenuation through highly filled and pigmented materials to increase polymerisation at the base of the restoration. However, and although light curing greater than 2mm thick layers is not an entirely new phenomenon, the desire amongst dental practitioners for even more rapid processing in deep cavities has led to the growing acceptance of so-called "bulk fill" (4-6mm thick) resin composites that are irradiated for 10-20s in daily clinical practice. The change in light transmission and attenuation during photopolymerisation are complex and related to path length, absorption properties of the photoinitiator and pigment, optical properties of the resin and filler and filler morphology. Understanding how light is transmitted through depth is therefore critical for ensuring optimal material properties at the base of thick increments. This article will briefly highlight the advent of current commercial materials that rationalise bulk filling techniques in dentistry, the relationship between light transmission and polymerisation and how optimal curing depths might be achieved.


Assuntos
Resinas Compostas/química , Resinas Compostas/efeitos da radiação , Cura Luminosa de Adesivos Dentários , Processos Fotoquímicos , Lâmpadas de Polimerização Dentária , Dureza , Teste de Materiais , Polimerização , Propriedades de Superfície
20.
J Biophotonics ; 10(11): 1514-1525, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28164460

RESUMO

Lasers/LEDs demonstrate therapeutic effects for a range of biomedical applications. However, a consensus on effective light irradiation parameters and efficient and reliable measurement techniques remain limited. The objective here is to develop, characterise and demonstrate the application of LED arrays in order to progress and improve the effectiveness and accuracy of in vitro photobiomodulation studies. 96-well plate format LED arrays (400-850 nm) were developed and characterised to accurately assess irradiance delivery to cell cultures. Human dental pulp cells (DPCs) were irradiated (3.5-142 mW/cm2 : 15-120 s) and the biological responses were assessed using MTT assays. Array calibration was confirmed using a range of optical and analytical techniques. Multivariate analysis of variance revealed biological responses were dependent on wavelength, exposure time and the post-exposure assay time (P < 0.05). Increased MTT asbsorbance was measured 24 h post-irradiation for 30 s exposures of 3.5 mW/cm2 at 470, 527, 631, 655, 680, 777, 798 and 826 nm with distinct peaks at 631 nm and 798 nm (P < 0.05). Similar wavelengths were also effective at higher irradiances (48-142 mW/cm2 ). LED arrays and high throughput assays provide a robust and reliable platform to rapidly identify irradiation parameters which is both time- and cost-effective. These arrrays are applicable in photobiomodulation, photodynamic therapy and other photobiomedical research.


Assuntos
Equipamentos e Provisões Elétricas , Fototerapia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA