Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mammary Gland Biol Neoplasia ; 21(3-4): 89-98, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27518775

RESUMO

Multicellular tumor spheroids are widely used models in tumor research. Because of their three dimensional organization they can simulate avascular tumor areas comprising proliferative and necrotic cells. Nonetheless, protocols for spheroid generation are still inconsistent. Therefore, in this study the breast cancer cell lines MCF-7, MDA-MB-231 and SK-BR-3 have been used to compare different spheroid generation models including hanging drop, liquid overlay and suspension culture techniques, each under several conditions. Experimental approaches differed in cell numbers (400-10,000), media and additives (25 % methocel, 25 % methocel plus 1 % Matrigel, 3.5 % Matrigel). In total, 42 different experimental setups have been tested. Generation of spheroids was evaluated by light microscopy and the structural composition was assessed immunohistochemically by means of Ki-67, cleaved poly (ADP-ribose) polymerase (cPARP) and mucin-1 (MUC-1) expression. Although the tested cell lines diverged widely in their capacity of forming spheroids we recommend hanging drops supplemented with 25 % methocel as the most reliable and efficient method with regard to success of generation of uniform spheroids, costs, experimental complexity and time expenditure in the different cell lines. MCF-7 cells formed spheroids under almost all analyzed conditions, and MDA-MB-231 cells under only one protocol (liquid overlay technique, 3.5 % Matrigel), while SK-BR-3 did not under neither condition. Therefore, we outline specific methods and recommend the use of adapted and standardized spheroid generation protocols for each cell line.


Assuntos
Neoplasias da Mama/patologia , Esferoides Celulares/patologia , Neoplasias da Mama/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Feminino , Humanos , Antígeno Ki-67/metabolismo , Células MCF-7 , Mucina-1/metabolismo , Esferoides Celulares/metabolismo
2.
J Reprod Dev ; 61(5): 383-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26050642

RESUMO

Epidermal growth factor (EGF) has been shown to be involved in control of the oviductal microenvironment. To elucidate the potential mechanisms responsible for the detrimental effect of heat stress and to identify the relation with the endocrine status, the effects of EGF on the level of phosphorylated mitogen-activated-protein kinase (MAPK) and proliferation of bovine oviductal epithelial cells (OECs) exposed to different cyclic ovarian steroidal environments (luteal phase (LP), follicular phase (FP) and postovulatory phase (PO)) and temperatures (mild heat stress (40 C) and severe heat stress (43 C)) were investigated. Western blot was performed to evaluate phosphorylated MAPK, while proliferation was analyzed by MTT assay. Stimulation of OECs with EGF alone or with EGF in the PO and FP environments significantly increased the amount of phosphorylated MAPK, with MAPK 44 phosphorylation being highest during exposure to PO conditions. These effects were not observed in the LP. Heat treatment completely blocked effects of EGF on phosphorylated MAPK. Additionally, severe heat stress led to a significantly lower basal level of phosphorylated MAPK. PD98059 (MAPK inhibitor) completely abolished EGF-stimulated MAPK phosphorylation and OECs proliferation. Overall the results indicate that EGF has the potential to increase the amount of phosphorylated MAPK in OECs and therefore could be involved in regulation of the bovine oviductal microenvironment. However, these regulatory mechanisms may be compromised in the presence of heat stress (high ambient temperature), leading to low fertility rates and impaired embryo survival.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/agonistas , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oviductos/metabolismo , Processamento de Proteína Pós-Traducional , Regulação para Cima , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fator de Crescimento Epidérmico/genética , Receptores ErbB/metabolismo , Feminino , Período Fértil/efeitos dos fármacos , Período Fértil/metabolismo , Fase Folicular/efeitos dos fármacos , Fase Folicular/metabolismo , Temperatura Alta/efeitos adversos , Humanos , Fase Luteal/efeitos dos fármacos , Fase Luteal/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Mucosa/citologia , Mucosa/efeitos dos fármacos , Mucosa/metabolismo , Oviductos/citologia , Oviductos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Toxicol Pathol ; 42(2): 314-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23548606

RESUMO

The immune system represents a key defense mechanism against potential pathogens and adverse non-self materials. During pregnancy, the placenta is the point of contact between the maternal organism and non-self proteins of the fetal allograft and hence undoubtedly fulfils immune functions. In the placenta bacteria, foreign (non-self) proteins and proteins that might be introduced in toxicological studies or by medication are barred from reaching the progeny, and the maternal immune system is primed for acceptance of non-maternal fetal protein. Both immunologic protection of the fetus and acceptance of the fetus by the mother require effective mechanisms to prevent an immunologic fetomaternal conflict and to keep both organisms in balance. This is why the placenta requires toxicological consideration in view of its immune organ function. The following articles deal with placenta immune-, control-, and tolerance mechanisms in view of both fetal and maternal aspects. Furthermore, models for experimental access to placental immune function are addressed and the pathological evaluation is elucidated. "The Placenta as an Immune Organ and Its Relevance in Toxicological Studies" was subject of a continuing education course at the 2012 Society of Toxicologic Pathology meeting held in Boston, MA.


Assuntos
Macaca fascicularis , Modelos Animais , Placenta/imunologia , Placenta/metabolismo , Animais , Feminino , Histocitoquímica , Tolerância Imunológica , Placenta/anatomia & histologia , Gravidez , Toxicologia/métodos
4.
Toxicol Pathol ; 42(2): 327-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23531796

RESUMO

During pregnancy, the maternal immune system is challenged by the semiallogeneic fetus, which must be tolerated without compromising fetal or maternal health. This review updates the systemic and local immune changes taking place during human pregnancy, including some examples in rodents. Systemic changes are induced by contact of maternal blood with placental factors and include enhanced innate immunity with increased activation of granulocytes and nonclassical monocytes. Although a bias toward T helper (Th2) and regulatory T cell (Treg) immunity has been associated with healthy pregnancy, the relationship between different circulating Th cell subsets is not straightforward. Instead, these adaptations appear most evidently at the fetal-maternal interface, where for instance Tregs are enriched and promote fetal tolerance. Also innate immune cells, that is, natural killer cells and macrophages, are enriched, constituting the majority of decidual leukocytes. These cells not only contribute to immune regulation but also aid in establishing the placenta by promoting trophoblast recruitment and angiogenesis. Thus, proper interaction between leukocytes and placental trophoblasts is necessary for normal placentation and immune adaptation. Consequently, spontaneous maladaptation or interference of the immune system with toxic substances may be important contributing factors for the development of pregnancy complications such as preeclampsia, preterm labor, and recurrent miscarriages.


Assuntos
Placenta/imunologia , Imunidade Adaptativa/imunologia , Animais , Feminino , Humanos , Imunidade Inata/imunologia , Troca Materno-Fetal/imunologia , Gravidez
5.
BMC Vet Res ; 7: 42, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21810270

RESUMO

BACKGROUND: The equine periodontium provides tooth support and lifelong tooth eruption on a remarkable scale. These functions require continuous tissue remodeling. It is assumed that multipotent mesenchymal stromal cells (MSC) reside in the periodontal ligament (PDL) and play a crucial role in regulating physiological periodontal tissue regeneration. The aim of this study was to isolate and characterize equine periodontal MSC. Tissue samples were obtained from four healthy horses. Primary cell populations were harvested and cultured from the gingiva, from three horizontal levels of the PDL (apical, midtooth and subgingival) and for comparison purposes from the subcutis (masseteric region). Colony-forming cells were grown on uncoated culture dishes and typical in vitro characteristics of non-human MSC, i.e. self-renewal capacity, population doubling time, expression of stemness markers and trilineage differentiation were analyzed. RESULTS: Colony-forming cell populations from all locations showed expression of the stemness markers CD90 and CD105. In vitro self-renewal capacity was demonstrated by colony-forming unit fibroblast (CFU-F) assays. CFU-efficiency was highest in cell populations from the apical and from the mid-tooth PDL. Population doubling time was highest in subcutaneous cells. All investigated cell populations possessed trilineage differentiation potential into osteogenic, adipogenic and chondrogenic lineages. CONCLUSIONS: Due to the demonstrated in vitro characteristics cells were referred to as equine subcutaneous MSC (eSc-MSC), equine gingival MSC (eG-MSC) and equine periodontal MSC (eP-MSC). According to different PDL levels, eP-MSC were further specified as eP-MSC from the apical PDL (eP-MSCap), eP-MSC from the mid-tooth PDL (eP-MSCm) and eP-MSC from the subgingival PDL (eP-MSCsg). Considering current concepts of cell-based regenerative therapies in horses, eP-MSC might be promising candidates for future clinical applications in equine orthopedic and periodontal diseases.


Assuntos
Diferenciação Celular/fisiologia , Condrócitos/citologia , Cavalos/anatomia & histologia , Células-Tronco Mesenquimais/citologia , Ligamento Periodontal/citologia , Animais , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/veterinária , Feminino , Masculino , Células-Tronco Mesenquimais/ultraestrutura , Microscopia de Contraste de Fase/veterinária , RNA Mensageiro/química , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária
7.
Nat Ecol Evol ; 3(12): 1743-1753, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768023

RESUMO

Among mammals, placental invasion is correlated with vulnerability to malignancy. Animals with more invasive placentation (for example, humans) are more vulnerable to malignancy. To explain this correlation, we propose the hypothesis of 'Evolved Levels of Invasibility' proposing that the evolution of invasibility of stromal tissue affects both placental and cancer invasion. We provide evidence for this using an in vitro model. We find that bovine endometrial and skin fibroblasts are more resistant to invasion than are their human counterparts. Gene expression profiling identified genes with high expression in human but not in bovine fibroblasts. Knocking down a subset of them in human fibroblasts leads to stronger resistance to cancer cell invasion. Identifying the evolutionary determinants of stromal invasibility can provide important insights to develop rational antimetastatic therapeutics.


Assuntos
Fibroblastos , Mamíferos , Animais , Bovinos , Feminino , Perfilação da Expressão Gênica , Humanos , Gravidez
8.
Placenta ; 67: 61-69, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29941175

RESUMO

INTRODUCTION: Uterine glands (UG) are crucial for the establishment of ruminant pregnancy and influenced (orchestrated manner) by estrogen (E2), progesterone (P4) and interferon tau (IFNτ). In the study we established a bovine endometrial glandular cell line (BGEC) and tested its functional reactivity (signaling) to IFNτ. METHODS: BGEC was characterized by light microscopy (LM), epithelial markers (ezrin, CK18) [immunofluorescence (IF)/immunohistochemistry (IHC)] and ultrastructure (TEM/SEM) (apical microvilli). In vitro formation of gland acini and transepithelial-electric-resistance (TEER) measurements (EVOM) were done. The expression of mRNA-transcripts (RT-PCR) of steroid receptors (PR, PGRMC1/2, ESR1/2) and the IFNτ-system (IFNAR1/2, IRF1, 2, 9) was checked. BEGC was stimulated with IFNτ (10 ng/ml;1000 ng/ml) (15 min) after steroid pre-treatment [10 pg/ml E2 (two days)/20 ng/ml P4 (two days)]. Activation of MAPK42/44;STAT1 was evaluated (densitometrical Western Blot). RESULTS: BGEC cells expressed epithelial markers and possessed apical microvilli. High TEER-values could be measured (2320-2620 ohm/cm2). The assembled BEGC acini (25 days) were similar to UG in vivo (markers/ultrastructure). All transcripts (steroid receptors/IFNτ-system) could be detected in BEGC (mRNA). MAPK42/44 were significantly activated after E2/P4 pre-treatment and IFNτ stimulation (10 ng/ml) (p < 0.05), whilst 1000 ng/ml IFNτ did not activate MAPK42/44. Neither a STAT1 (by IFNτ) nor an activation (MAPK42/44;STAT1) by IFNτ-only was observed. DISCUSSION: BGEC retains its epithelial phenotype in culture and forms gland acini in vitro thereby confirming its glandular character. Cells were only reactive to (low) IFNτ concentrations when pre-treated with steroids thereby closely resembling implantation physiology in vivo. BEGC can be used as a bovine implantation model to study embryo-maternal communication during early pregnancy in cattle.


Assuntos
Células Acinares/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Endométrio/citologia , Células Epiteliais/efeitos dos fármacos , Estradiol/farmacologia , Interferon Tipo I/farmacologia , Proteínas da Gravidez/farmacologia , Progesterona/farmacologia , Células Acinares/citologia , Células Acinares/fisiologia , Anexos Uterinos/citologia , Anexos Uterinos/efeitos dos fármacos , Anexos Uterinos/fisiologia , Animais , Bovinos , Técnicas de Cultura de Células , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA