RESUMO
OBJECTIVE: Advances in nanotechnology make it possible to specifically target therapies to cancer cells and neoplasms, guide the surgical resection of tumors, and optimize the effectiveness of radiological treatments. This research article provides a concise synthesis of current knowledge in the field of galenic pharmacy focused on targeted drug delivery in oncology. This research article synthesizes current knowledge in galenic pharmacy, focusing on targeted drug delivery in oncology and reviewing recent advancements in nanopharmaceuticals for cancer treatment. DATA SOURCE: The data for this review are derived from a comprehensive analysis of the most cited scientific literature (Pubmed). Recent studies, clinical trials, and technological breakthroughs related to nanopharmaceuticals have been rigorously examined. This diverse source ensures a comprehensive representation of the latest developments in the field. SUMMARY OF DATA: The results highlight the emergence of nanopharmaceuticals as a promising approach to cancer treatment. The most common in oncology remain liposomes, nanopolymers, and nanocrystals. From a galenic point of view, these three forms offer a wide range of improvements compared to conventional forms such as improvement in solubility as well as stability. The same observation is in the clinic where treatment response rates are significantly improved. The most advantageous form will depend on the specific characteristics of each patient and each type of cancer. The precise design of nanocarriers allows for targeted drug delivery, enhancing therapeutic efficacy while reducing side effects. Concrete examples of clinical applications are presented, illustrating the practical potential of these advancements. CONCLUSION: In conclusion, this review provides a holistic overview of recent developments in galenic pharmacy for targeted drug delivery in oncology. The stability of nanocarriers is a crucial challenge because it conditions the effectiveness and safety of the drugs transported. Environmental and biological variations encountered in the body can compromise this stability, jeopardizing the therapeutic effectiveness and safety of treatments. Likewise, personalized approaches are essential to address interindividual variations in treatment response, as well as patients' pharmacogenomic profiles, in order to optimize therapeutic effectiveness and minimize adverse effects.
Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Lipossomos , Nanotecnologia/métodos , AnimaisRESUMO
Drought and water shortage are serious problems in many arid and semi-arid regions. This problem is getting worse and even continues in temperate climatic regions due to climate change. To address this problem, the use of biodegradable hydrogels is increasingly important for the application as water-retaining additives in soil. Furthermore, efficient (micro-)nutrient supply can be provided by the use of tailored hydrogels. Biodegradable polyaspartic acid (PASP) hydrogels with different available (1,6-hexamethylene diamine (HMD) and L-lysine (LYS)) and newly developed crosslinkers based on diesters of glycine (GLY) and (di-)ethylene glycol (DEG and EG, respectively) were synthesized and characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) and regarding their swelling properties (kinetic, absorbency under load (AUL)) as well as biodegradability of PASP hydrogel. Copper (II) and zinc (II), respectively, were loaded as micronutrients in two different approaches: in situ with crosslinking and subsequent loading of prepared hydrogels. The results showed successful syntheses of di-glycine-ester-based crosslinkers. Hydrogels with good water-absorbing properties were formed. Moreover, the developed crosslinking agents in combination with the specific reaction conditions resulted in higher water absorbency with increased crosslinker content used in synthesis (10% vs. 20%). The prepared hydrogels are candidates for water-storing soil additives due to the biodegradability of PASP, which is shown in an exemple. The incorporation of Cu(II) and Zn(II) ions can provide these micronutrients for plant growth.