Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(4): 915-929, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38357819

RESUMO

BACKGROUND: Until now, the analysis of microvascular networks in the reperfused ischemic brain has been limited due to tissue transparency challenges. METHODS: Using light sheet microscopy, we assessed microvascular network remodeling in the striatum from 3 hours to 56 days post-ischemia in 2 mouse models of transient middle cerebral artery occlusion lasting 20 or 40 minutes, resulting in mild ischemic brain injury or brain infarction, respectively. We also examined the effect of a clinically applicable S1P (sphingosine-1-phosphate) analog, FTY720 (fingolimod), on microvascular network remodeling. RESULTS: Over 56 days, we observed progressive microvascular degeneration in the reperfused striatum, that is, the lesion core, which was followed by robust angiogenesis after mild ischemic injury induced by 20-minute middle cerebral artery occlusion. However, more severe ischemic injury elicited by 40-minute middle cerebral artery occlusion resulted in incomplete microvascular remodeling. In both cases, microvascular networks did not return to their preischemic state but displayed a chronically altered pattern characterized by higher branching point density, shorter branches, higher unconnected branch density, and lower tortuosity, indicating enhanced network connectivity. FTY720 effectively increased microvascular length density, branching point density, and volume density in both models, indicating an angiogenic effect of this drug. CONCLUSIONS: Utilizing light sheet microscopy together with automated image analysis, we characterized microvascular remodeling in the ischemic lesion core in unprecedented detail. This technology will significantly advance our understanding of microvascular restorative processes and pave the way for novel treatment developments in the stroke field.


Assuntos
Isquemia Encefálica , Cloridrato de Fingolimode , Camundongos , Animais , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Infarto da Artéria Cerebral Média/patologia , Microscopia , Encéfalo/irrigação sanguínea , Microvasos/patologia , Modelos Animais de Doenças
2.
Neurobiol Dis ; 201: 106682, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39332507

RESUMO

Sphingolipids comprise a class of lipids, which are composed of a sphingoid base backbone and are essential structural components of cell membranes. Beyond their role in maintaining cellular integrity, several sphingolipids are pivotally involved in signaling pathways controlling cell proliferation, differentiation, and death. The brain exhibits a particularly high concentration of sphingolipids and dysregulation of the sphingolipid metabolism due to ischemic injury is implicated in consecutive pathological events. Experimental stroke studies revealed that the stress sphingolipid ceramide accumulates in the ischemic brain post-stroke. Specifically, counteracting ceramide accumulation protects against ischemic damage and promotes brain remodeling, which translates into improved behavioral outcome. Sphingomyelin substantially influences cell membrane fluidity and thereby controls the release of extracellular vesicles, which are important vehicles in cellular communication. By modulating sphingomyelin content, these vesicles were shown to contribute to behavioral recovery in experimental stroke studies. Another important sphingolipid that influences stroke pathology is sphingosine-1-phosphate, which has been attributed a pro-angiogenic function, that is presumably mediated by its effect on endothelial function and/or immune cell trafficking. In experimental and clinical studies, sphingosine-1-phosphate receptor modulators allowed to modify clinically significant stroke recovery. Due to their pivotal roles in cell signaling, pharmacological compounds modulating sphingolipids, their enzymes or receptors hold promise as therapeutics in human stroke patients.


Assuntos
Isquemia Encefálica , Transdução de Sinais , Esfingolipídeos , Humanos , Esfingolipídeos/metabolismo , Animais , Transdução de Sinais/fisiologia , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo
3.
J Neuroinflammation ; 20(1): 210, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715288

RESUMO

BACKGROUND: The intravenous delivery of adult neural precursor cells (NPC) has shown promising results in enabling cerebroprotection, brain tissue remodeling, and neurological recovery in young, healthy stroke mice. However, the translation of cell-based therapies to clinical settings has encountered challenges. It remained unclear if adult NPCs could induce brain tissue remodeling and recovery in mice with hyperlipidemia, a prevalent vascular risk factor in stroke patients. METHODS: Male mice on a normal (regular) diet or on cholesterol-rich Western diet were exposed to 30 min intraluminal middle cerebral artery occlusion (MCAO). Vehicle or 106 NPCs were intravenously administered immediately after reperfusion, at 3 day and 7 day post-MCAO. Neurological recovery was evaluated using the Clark score, Rotarod and tight rope tests over up to 56 days. Histochemistry and light sheet microscopy were used to examine ischemic injury and brain tissue remodeling. Immunological responses in peripheral blood and brain were analyzed through flow cytometry. RESULTS: NPC administration reduced infarct volume, blood-brain barrier permeability and the brain infiltration of neutrophils, monocytes, T cells and NK cells in the acute stroke phase in both normolipidemic and hyperlipidemic mice, but increased brain hemorrhage formation and neutrophil, monocyte and CD4+ and CD8+ T cell counts and activation in the blood of hyperlipidemic mice. While neurological deficits in hyperlipidemic mice were reduced by NPCs at 3 day post-MCAO, NPCs did not improve neurological deficits at later timepoints. Besides, NPCs did not influence microglia/macrophage abundance and activation (assessed by morphology analysis), astroglial scar formation, microvascular length or branching point density (evaluated using light sheet microscopy), long-term neuronal survival or brain atrophy in hyperlipidemic mice. CONCLUSIONS: Intravenously administered NPCs did not have persistent effects on post-ischemic neurological recovery and brain remodeling in hyperlipidemic mice. These findings highlight the necessity of rigorous investigations in vascular risk factor models to fully assess the long-term restorative effects of cell-based therapies. Without comprehensive studies in such models, the clinical potential of cell-based therapies cannot be definitely determined.


Assuntos
Células-Tronco Neurais , Acidente Vascular Cerebral , Masculino , Animais , Camundongos , Neurônios , Hemorragias Intracranianas , Encéfalo
4.
Basic Res Cardiol ; 117(1): 43, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36038749

RESUMO

Antidepressants have been reported to enhance stroke recovery independent of the presence of depressive symptoms. They have recently been proposed to exert their mood-stabilizing actions by inhibition of acid sphingomyelinase (ASM), which catalyzes the hydrolysis of sphingomyelin to ceramide. Their restorative action post-ischemia/reperfusion (I/R) still had to be defined. Mice subjected to middle cerebral artery occlusion or cerebral microvascular endothelial cells exposed to oxygen-glucose deprivation were treated with vehicle or with the chemically and pharmacologically distinct antidepressants amitriptyline, fluoxetine or desipramine. Brain ASM activity significantly increased post-I/R, in line with elevated ceramide levels in microvessels. ASM inhibition by amitriptyline reduced ceramide levels, and increased microvascular length and branching point density in wildtype, but not sphingomyelinase phosphodiesterase-1 ([Smpd1]-/-) (i.e., ASM-deficient) mice, as assessed by 3D light sheet microscopy. In cell culture, amitriptyline, fluoxetine, and desipramine increased endothelial tube formation, migration, VEGFR2 abundance and VEGF release. This effect was abolished by Smpd1 knockdown. Mechanistically, the promotion of angiogenesis by ASM inhibitors was mediated by small extracellular vesicles (sEVs) released from endothelial cells, which exhibited enhanced uptake in target cells. Proteomic analysis of sEVs revealed that ASM deactivation differentially regulated proteins implicated in protein export, focal adhesion, and extracellular matrix interaction. In vivo, the increased angiogenesis was accompanied by a profound brain remodeling response with increased blood-brain barrier integrity, reduced leukocyte infiltrates and increased neuronal survival. Antidepressive drugs potently boost angiogenesis in an ASM-dependent way. The release of sEVs by ASM inhibitors disclosed an elegant target, via which brain remodeling post-I/R can be amplified.


Assuntos
Amitriptilina , Vesículas Extracelulares , Amitriptilina/metabolismo , Amitriptilina/farmacologia , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Encéfalo/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacologia , Desipramina/metabolismo , Desipramina/farmacologia , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Isquemia/metabolismo , Camundongos , Proteômica
5.
Basic Res Cardiol ; 116(1): 40, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34105014

RESUMO

Obtained from the right cell-type, mesenchymal stromal cell (MSC)-derived small extracellular vesicles (sEVs) promote stroke recovery. Within this process, microvascular remodeling plays a central role. Herein, we evaluated the effects of MSC-sEVs on the proliferation, migration, and tube formation of human cerebral microvascular endothelial cells (hCMEC/D3) in vitro and on post-ischemic angiogenesis, brain remodeling and neurological recovery after middle cerebral artery occlusion (MCAO) in mice. In vitro, sEVs obtained from hypoxic (1% O2), but not 'normoxic' (21% O2) MSCs dose-dependently promoted endothelial proliferation, migration, and tube formation and increased post-ischemic endothelial survival. sEVs from hypoxic MSCs regulated a distinct set of miRNAs in hCMEC/D3 cells previously linked to angiogenesis, three being upregulated (miR-126-3p, miR-140-5p, let-7c-5p) and three downregulated (miR-186-5p, miR-370-3p, miR-409-3p). LC/MS-MS revealed 52 proteins differentially abundant in sEVs from hypoxic and 'normoxic' MSCs. 19 proteins were enriched (among them proteins involved in extracellular matrix-receptor interaction, focal adhesion, leukocyte transendothelial migration, protein digestion, and absorption), and 33 proteins reduced (among them proteins associated with metabolic pathways, extracellular matrix-receptor interaction, focal adhesion, and actin cytoskeleton) in hypoxic MSC-sEVs. Post-MCAO, sEVs from hypoxic MSCs increased microvascular length and branching point density in previously ischemic tissue assessed by 3D light sheet microscopy over up to 56 days, reduced delayed neuronal degeneration and brain atrophy, and enhanced neurological recovery. sEV-induced angiogenesis in vivo depended on the presence of polymorphonuclear neutrophils. In neutrophil-depleted mice, MSC-sEVs did not influence microvascular remodeling. sEVs from hypoxic MSCs have distinct angiogenic properties. Hypoxic preconditioning enhances the restorative effects of MSC-sEVs.


Assuntos
Proteínas Angiogênicas/metabolismo , Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Vesículas Extracelulares/transplante , Infarto da Artéria Cerebral Média/cirurgia , Células-Tronco Mesenquimais/metabolismo , Microvasos/metabolismo , Neovascularização Fisiológica , Remodelação Vascular , Proteínas Angiogênicas/genética , Animais , Hipóxia Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Humanos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Microvasos/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Recuperação de Função Fisiológica , Transdução de Sinais , Fatores de Tempo
6.
Brain Behav Immun ; 94: 458-462, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621620

RESUMO

BACKGROUND: The newly emerged severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused a worldwide pandemic of human respiratory disease. Angiotensin-converting enzyme (ACE) 2 is the key receptor on lung epithelial cells to facilitate initial binding and infection of SARS-CoV-2. The binding to ACE2 is mediated via the spike glycoprotein present on the viral surface. Recent clinical data have demonstrated that patients with previous episodes of brain injuries are a high-risk group for SARS-CoV-2 infection. An explanation for this finding is currently lacking. Sterile tissue injuries including stroke induce the release of several inflammatory mediators that might modulate the expression levels of signaling proteins in distant organs. Whether systemic inflammation following brain injury can specifically modulate ACE2 expression in different vital tissues has not been investigated. METHODS: For the induction of brain stroke, mice were subjected to a surgical procedure for transient interruption of blood flow in the middle cerebral artery for 45 min and sacrificed after 1 and 3 days for analysis of brain, lung, heart, and kidney tissues. Gene expression and protein levels of ACE2, ACE, IL-6 and IL1ß were measured by quantitative PCR and Western blot, respectively. The level of soluble ACE2 in plasma and bronchial alveolar lavage (BAL) was measured using an immunoassay. Immune cell populations in lymphoid organs were analyzed by flow cytometry. Post-stroke pneumonia in mice was examined by bacterial cultures from lung homogenates and whole blood. RESULTS: Strikingly, 1 day after surgery, we observed a substantial increase in the protein levels of ACE2 in the lungs of stroke mice compared to sham-operated mice. However, the protein levels of ACE2 were found unchanged in the heart, kidney, and brain of these animals. In addition, we found increased transcriptional levels of alveolar ACE2 after stroke. The increased expression of ACE2 was significantly associated with the severity of behavioral deficits after stroke. The higher protein levels of alveolar ACE2 persisted until 3 days of stroke. Interestingly, we found reduced levels of soluble ACE2 in plasma but not in BAL in stroke-operated mice compared to sham mice. Furthermore, stroke-induced parenchymal and systemic inflammation was evident with the increased expression of IL-6 and IL-1ß. Reduced numbers of T-lymphocytes were present in the blood and spleen as an indicator of sterile tissue injury-induced immunosuppression. CONCLUSIONS: We demonstrate specific augmented alveolar ACE2 levels and inflammation in murine lungs after experimental stroke. These pre-clinical findings suggest that patients with brain injuries may have increased binding affinity to SARS-CoV-2 in their lungs which might explain why stroke is a risk factor for higher susceptibility to develop COVID-19.


Assuntos
COVID-19 , Acidente Vascular Cerebral , Animais , Humanos , Pulmão , Camundongos , Peptidil Dipeptidase A/genética , SARS-CoV-2
7.
Stroke ; 51(6): 1825-1834, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32312217

RESUMO

Background and Purpose- Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) were shown to induce neurological recovery after focal cerebral ischemia in rodents and to reverse postischemic lymphopenia in peripheral blood. Since peripheral blood cells, especially polymorphonuclear neutrophils (PMNs), contribute to ischemic brain injury, we analyzed brain leukocyte responses to sEVs and investigated the role of PMNs in sEV-induced neuroprotection. Methods- Male C57Bl6/j mice were exposed to transient intraluminal middle cerebral artery occlusion. After reperfusion, vehicle or sEVs prepared from conditioned media of MSCs raised from bone marrow samples of 3 randomly selected healthy human donors were intravenously administered. sEVs obtained from normoxic and hypoxic MSCs were applied. PMNs were depleted in vehicle and MSC-sEV-treated mice. Neurological deficits, ischemic injury, blood-brain barrier integrity, peripheral blood leukocyte responses, and brain leukocyte infiltration were evaluated over 72 hours. Results- sEV preparations of all 3 donors collected from normoxic MSCs significantly reduced neurological deficits. Preparations of 2 of these donors significantly decreased infarct volume and neuronal injury. sEV-induced neuroprotection was consistently associated with a decreased brain infiltration of leukocytes, namely of PMNs, monocytes/macrophages, and lymphocytes. sEVs obtained from hypoxic MSCs (1% O2) had similar effects on neurological deficits and ischemic injury as MSC-sEVs obtained under regular conditions (21% O2) but also reduced serum IgG extravasation-a marker of blood-brain barrier permeability. PMN depletion mimicked the effects of MSC-sEVs on neurological recovery, ischemic injury, and brain PMN, monocyte, and lymphocyte counts. Combined MSC-sEV administration and PMN depletion did not have any effects superior to PMN depletion in any of the readouts examined. Conclusions- Leukocytes and specifically PMNs contribute to MSC-sEV-induced ischemic neuroprotection. Individual MSC-sEV preparations may differ in their neuroprotective activities. Potency assays are urgently needed to identify their therapeutic efficacy before clinical application. Visual Overview- An online visual overview is available for this article.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Vesículas Extracelulares , Células-Tronco Mesenquimais/metabolismo , Neuroproteção , Neutrófilos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/sangue , Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Vesículas Extracelulares/transplante , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Neutrófilos/patologia
8.
Basic Res Cardiol ; 115(6): 64, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057972

RESUMO

By cleaving sphingomyelin into ceramide, which is an essential component of plasma membrane microdomains, acid sphingomyelinase (Asm) pivotally controls cell signaling. To define how the activation of the Asm/ceramide pathway, which occurs within seconds to minutes upon stress stimuli, influences brain ischemia/reperfusion (I/R) injury, we exposed male and female wildtype mice carrying both alleles of Asm's gene sphingomyelinase phosphodiesterase-1 (Smpd1+/+), heterozygously Asm-deficient mice (Smpd1+/-) and homozygously Asm-deficient mice (Smpd1-/-) of different age (8, 12 or 16 weeks) to 30, 60 or 90 min intraluminal middle cerebral artery occlusion (MCAO). For studying the contribution of brain-invading polymorphonuclear neutrophils (PMN) to I/R injury, PMNs were depleted by delivery of a PMN-specific Ly6G antibody. In male and female mice exposed to 30 min, but not 60 or 90 min MCAO, homozygous Smpd1-/- consistently increased I/R injury, blood-brain barrier permeability and brain leukocyte and PMN infiltration, whereas heterozygous Smpd1+/- reduced I/R injury. Increased abundance of the intercellular leukocyte adhesion molecule ICAM-1 was noted on cerebral microvessels of Smpd1-/- mice. PMN depletion by anti-Ly6G delivery prevented the exacerbation of I/R injury in Smpd1-/- compared with wildtype mice and reduced brain leukocyte infiltrates. Our results show that Asm tempers leukocyte entry into the reperfused ischemic brain, thereby attenuating I/R injury.


Assuntos
Encéfalo/irrigação sanguínea , Infarto da Artéria Cerebral Média/enzimologia , Microvasos/enzimologia , Infiltração de Neutrófilos , Neutrófilos/enzimologia , Traumatismo por Reperfusão/enzimologia , Esfingomielina Fosfodiesterase/deficiência , Animais , Modelos Animais de Doenças , Feminino , Heterozigoto , Homozigoto , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Esfingomielina Fosfodiesterase/genética , Fatores de Tempo
9.
Neurosignals ; 27(S1): 32-43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31778304

RESUMO

In this review, we summarize implications of the acid sphingomyelinase/ ceramide system in ischemic stroke. Acid sphingomyelinase catalyzes the formation of the bioactive sphingolipid ceramide which coalesces into membrane platforms and has a pivotal role in inflammation, cell signaling and death. Cerebral ischemia increases acid sphingomyelinase activity and elevates brain ceramide levels, which has been associated with the exacerbation of ischemic injury and deterioration of stroke outcome. In view of the fact that lowering acid sphingomyelinase activity and ceramide level was shown to protect against ischemic injury and ameliorate neurological deficits, the acid sphingomyelinase/ ceramide system might represent a promising target for stroke therapies.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Ceramidas/antagonistas & inibidores , Sistemas de Liberação de Medicamentos/métodos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Antidepressivos/administração & dosagem , Antidepressivos/metabolismo , Isquemia Encefálica/metabolismo , Ceramidas/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Acidente Vascular Cerebral/metabolismo
10.
J Environ Manage ; 241: 488-500, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30979560

RESUMO

Empirical research on land sharing and land sparing has been criticized because preferences of local stakeholders, socio-economic aspects, a bundle of ecosystem services and the local context were only rarely integrated. Using storylines and scenarios is a common approach to include land use drivers and local contexts or to cope with the uncertainties of future developments. The objective of the presented research is to develop comparable participatory regional land use scenarios for the year 2030 reflecting land sharing, land sparing and more intermediate developments across five different European landscapes (Austria, Germany, Switzerland, The Netherlands and Spain). In order to ensure methodological consistency among the five case studies, a hierarchical multi-scale scenario approach was developed, which consisted of i) the selection of a common global storyline to frame a common sphere of uncertainty for all case studies, ii) the definition of three contrasting qualitative European storylines (representing developments for land sharing, land sparing and a balanced storyline), and iii) the development of three explorative case study-specific land use scenarios with regional stakeholders in workshops. Land use transition rules defined by stakeholders were used to generate three different spatially-explicit scenarios for each case study by means of high-resolution land use maps. All scenarios incorporated various aspects of land use and management to allow subsequent quantification of multiple ecosystem services and biodiversity indicators. The comparison of the final scenarios showed both common as well as diverging trends among the case studies. For instance, stakeholders identified further possibilities to intensify land management in all case studies in the land sparing scenario. In addition, in most case studies stakeholders agreed on the most preferred scenario, i.e. either land sharing or balanced, and the most likely one, i.e. balanced. However, they expressed some skepticism regarding the general plausibility of land sparing in a European context. It can be concluded that stakeholder perceptions and the local context can be integrated in land sharing and land sparing contexts subject to particular process design principles.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Áustria , Alemanha , Países Baixos , Espanha , Suíça
11.
Angiogenesis ; 21(2): 381-394, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29450744

RESUMO

High-density lipoprotein (HDL) has previously been shown to promote angiogenesis. However, the mechanisms by which HDL enhances the formation of blood vessels remain to be defined. To address this, the effects of HDL on the proliferation, transwell migration and tube formation of human umbilical vein endothelial cells were investigated. By examining the abundance and phosphorylation (i.e., activation) of the vascular endothelial growth factor receptor VEGFR2 and modulating the activity of the sphingosine-1 phosphate receptors S1P1-3 and VEGFR2, we characterized mechanisms controlling angiogenic responses in response to HDL exposure. Here, we report that HDL dose-dependently increased endothelial proliferation, migration and tube formation. These events were in association with increased VEGFR2 abundance and rapid VEGFR2 phosphorylation at Tyr1054/Tyr1059 and Tyr1175 residues in response to HDL. Blockade of VEGFR2 activation by the VEGFR2 inhibitor SU1498 markedly abrogated the pro-angiogenic capacity of HDL. Moreover, the S1P3 inhibitor suramin prevented VEGFR2 expression and abolished endothelial migration and tube formation, while the S1P1 agonist CYM-5442 and the S1P2 inhibitor JTE-013 had no effect. Last, the role of S1P3 was further confirmed in regulation of S1P-induced endothelial proliferation, migration and tube formation via up-regulation and activation of VEGFR2. Together, these findings argue that HDL promotes angiogenesis via S1P3-dependent up-regulation and activation of VEGFR2 and also suggest that the S1P-S1P3-VEGFR2 signaling cascades as a novel target for HDL-modulating therapy implicated in vascular remodeling and functional recovery in atherosclerotic diseases such as myocardial infarction and ischemic stroke.


Assuntos
Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipoproteínas HDL/metabolismo , Neovascularização Fisiológica , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos
12.
Histochem Cell Biol ; 145(1): 5-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26496921

RESUMO

ATOH8 is a bHLH transcription factor playing roles in a variety of developmental processes such as neurogenesis, differentiation of pancreatic precursor cells, development of kidney and muscle, and differentiation of endothelial cells. PPP3CB belongs to the catalytic subunit of the serine/threonine phosphatase, calcineurin, which can dephosphorylate its substrate proteins to regulate their physiological activities. In our study, we demonstrated that ATOH8 interacts with PPP3CB in vitro with different approaches. We show that the conserved catalytic domain of PPP3CB interacts with both the N-terminus and the bHLH domain of ATOH8. Although the interaction domain of PPP3CB is conserved among all isoforms of calcineurin A, ATOH8 selectively interacts with PPP3CB instead of PPP3CA, probably due to the unique proline-rich region present in the N-terminus of PPP3CB, which controls the specificity of its interaction partners. Furthermore, we show that inhibition of the interaction with calcineurin inhibitor, cyclosporin A (CsA), leads to the retention of ATOH8 to the cytoplasm, suggesting that the interaction renders nuclear localization of ATOH8 which may be critical to control its activity as transcription factor.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Inibidores de Calcineurina/química , Calcineurina/química , Ciclosporina/química , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células COS , Calcineurina/genética , Sinalização do Cálcio/genética , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Análise de Sequência de DNA
13.
EMBO J ; 30(8): 1659-70, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21378754

RESUMO

The oculocerebrorenal syndrome of Lowe (OCRL), also called Lowe syndrome, is characterized by defects of the nervous system, the eye and the kidney. Lowe syndrome is a monogenetic X-linked disease caused by mutations of the inositol-5-phosphatase OCRL1. OCRL1 is a membrane-bound protein recruited to membranes via interaction with a variety of Rab proteins. The structural and kinetic basis of OCRL1 for the recognition of several Rab proteins is unknown. In this study, we report the crystal structure of the Rab-binding domain (RBD) of OCRL1 in complex with Rab8a and the kinetic binding analysis of OCRL1 with several Rab GTPases (Rab1b, Rab5a, Rab6a and Rab8a). In contrast to other effectors that bind their respective Rab predominantly via α-helical structure elements, the Rab-binding interface of OCRL1 consists mainly of the IgG-like ß-strand structure of the ASPM-SPD-2-Hydin domain as well as one α-helix. Our results give a deeper structural understanding of disease-causing mutations of OCRL1 affecting Rab binding.


Assuntos
Mutação/genética , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Proteínas rab de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Cristalização , Cristalografia por Raios X , Imunofluorescência , Humanos , Imunoprecipitação , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas rab de Ligação ao GTP/genética
14.
Proc Natl Acad Sci U S A ; 109(52): 21426-31, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23213202

RESUMO

The intracellular nucleotide-binding oligomerization domain-2 (NOD2) receptor detects bacteria-derived muramyl dipeptide (MDP) and activates the transcription factor NF-κB. Here we describe the regulatome of NOD2 signaling using a systematic RNAi screen. Using three consecutive screens, we identified a set of 20 positive NF-κB regulators including the known pathway members RIPK2, RELA, and BIRC4 (XIAP) as well as FRMPD2 (FERM and PDZ domain-containing 2). FRMPD2 interacts with NOD2 via leucine-rich repeats and forms a complex with the membrane-associated protein ERBB2IP. We demonstrate that FRMPD2 spatially assembles the NOD2-signaling complex, hereby restricting NOD2-mediated immune responses to the basolateral compartment of polarized intestinal epithelial cells. We show that genetic truncation of the NOD2 leucine-rich repeat domain, which is associated with Crohn disease, impairs the interaction with FRMPD2, and that intestinal inflammation leads to down-regulation of FRMPD2. These results suggest a structural mechanism for how polarity of epithelial cells acts on intestinal NOD-like receptor signaling to mediate spatial specificity of bacterial recognition and control of immune responses.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Interferência de RNA , Transdução de Sinais , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Células CACO-2 , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/química , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Proteínas de Junções Íntimas/química
15.
Arterioscler Thromb Vasc Biol ; 33(7): 1561-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23559636

RESUMO

OBJECTIVE: Therapeutic angiogenesis aims at the promotion of vascular growth, usually under conditions of atherosclerosis. It was unknown how hyperlipidemia, a risk factor that is closely associated with atherosclerosis of brain vessels in humans, influences vascular endothelial growth factor-induced angiogenesis and stroke recovery. APPROACH AND RESULTS: Wild-type and apolipoprotein-E (ApoE)(-/-) mice were kept on regular or cholesterol-rich diet for mimicking different severities of hyperlipidemia. Mice were treated intracerebroventricularly with recombinant human vascular endothelial growth factor for 21 days (0.02 µg/d) and subsequently subjected to 90-minute middle cerebral artery occlusion followed by 1 or 24 hours of reperfusion. Histochemical, autoradiographic, and regional bioluminescence techniques were used to evaluate effects of blood lipids on postischemic angiogenesis, histopathologic brain injury, cerebral blood flow, protein synthesis and energy state, and pericyte coverage of brain endothelial cells. Hyperlipidemia dose-dependently attenuated vascular endothelial growth factor-induced capillary formation and pericyte coverage of brain endothelial cells, abolishing the improvement of cerebral blood flow during subsequent stroke, resulting in the loss of the metabolic penumbra and increased brain infarction. The enhanced angiogenesis after vascular endothelial growth factor treatment was accompanied by increased expression of the adhesion protein N-cadherin, which mediates endothelial-pericytic interactions, in ischemic brain microvessels of wild-type mice on regular diet that was blunted in wild-type mice on Western diet and ApoE(-/-) mice on either diet. CONCLUSIONS: The compromised vessel formation and hemodynamics question the concept of therapeutic angiogenesis in ischemic stroke where hyperlipidemia is highly prevalent.


Assuntos
Indutores da Angiogênese/administração & dosagem , Capilares/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Hiperlipidemias/complicações , Neovascularização Fisiológica/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Pericitos/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Autorradiografia , Biomarcadores/sangue , Velocidade do Fluxo Sanguíneo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Caderinas/metabolismo , Capilares/patologia , Capilares/fisiopatologia , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/patologia , Hiperlipidemias/fisiopatologia , Bombas de Infusão Implantáveis , Fluxometria por Laser-Doppler , Lipídeos/sangue , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pericitos/metabolismo , Pericitos/patologia , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo
16.
Arterioscler Thromb Vasc Biol ; 33(6): 1271-9, 2013 06.
Artigo em Inglês | MEDLINE | ID: mdl-23599443

RESUMO

OBJECTIVE: Intimal hyperplasia is considered to be a healing response and is a major cause of vessel narrowing after injury, where migration of vascular progenitor cells contributes to pathological events, including transplant arteriosclerosis. APPROACH AND RESULTS: In this study, we used a rat aortic-allograft model to identify the predominant cell types associated with transplant arteriosclerosis and to identify factors important in their recruitment into the graft. Transplantation of labeled adventitial tissues allowed us to identify the adventitia as a major source of cells migrating to the intima. RNA microarrays revealed a potential role for monocyte chemoattractant protein 1 (MCP-1), stromal cell-derived factor 1, regulated on activation, normal T cell expressed and secreted, and interferon-inducible protein 10 in the induced vasculopathy. MCP-1 induced migration of adventitial fibroblast cells. CCR2, the receptor for MCP-1, was coexpressed with CD90, CD44, NG2, or sca-1 on mesenchymal stem cells. In vivo experiments using MCP-1-deficient and CCR2-deficient mice confirmed an important role of MCP-1 in the formation of intimal hyperplasia in a mouse model of vascular injury. CONCLUSIONS: The adventitia is a potentially important cellular source that contributes to intimal hyperplasia, and MCP-1 is a potent chemokine for the recruitment of adventitial vascular progenitor cells to intimal lesions.


Assuntos
Quimiocina CCL2/metabolismo , Células-Tronco Mesenquimais/citologia , Neointima/patologia , Túnica Íntima/patologia , Animais , Movimento Celular , Quimiocina CCL2/genética , Hiperplasia/genética , Hiperplasia/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Modelos Animais , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Ratos , Sensibilidade e Especificidade , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Transplante Homólogo , Túnica Íntima/metabolismo , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/fisiopatologia
17.
J Cereb Blood Flow Metab ; : 271678X241270407, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113408

RESUMO

Evaluation of microvascular networks was impeded until recently by the need of histological tissue sectioning, which precluded 3D analyses. Using light-sheet microscopy, we investigated microvascular network characteristics in the peri-infarct cortex of mice 3-56 days after transient middle cerebral artery occlusion. In animal subgroups, the sphingosine-1-phosphate analog FTY720 (Fingolimod) was administered starting 24 hours post-ischemia. Light-sheet microscopy revealed a striking pattern of microvascular changes in the peri-infarct cortex, that is, a loss of microvessels, which was most prominent after 7 days and followed by the reappearance of microvessels over 56 days which revealed an increased branching point density and shortened branches. Using a novel AI-based image analysis algorithm we found that the length density of microvessels expressing the arterial specification marker α-smooth muscle actin markedly increased in the peri-infarct cortex already at 7 days post-ischemia. The length and branch density of small microvessels, but not of intermediate or large microvessels increased above pre-ischemic levels within 14-56 days. FTY720 increased the length and branch density of small microvessels. This study demonstrates long-term alterations of microvascular architecture post-ischemia indicative of increased collateralization most notably of small microvessels. Light-sheet microscopy will greatly advance the assessment of microvascular responses to restorative stroke therapies.

18.
Nat Cardiovasc Res ; 3(5): 525-540, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39195931

RESUMO

Post-injury dysfunction of humoral immunity accounts for infections and poor outcomes in cardiovascular diseases. Among immunoglobulins (Ig), IgA, the most abundant mucosal antibody, is produced by plasma B cells in intestinal Peyer's patches (PP) and lamina propria. Here we show that patients with stroke and myocardial ischemia (MI) had strongly reduced IgA blood levels. This was phenocopied in experimental mouse models where decreased plasma and fecal IgA were accompanied by rapid loss of IgA-producing plasma cells in PP and lamina propria. Reduced plasma IgG was detectable in patients and experimental mice 3-10 d after injury. Stroke/MI triggered the release of neutrophil extracellular traps (NETs). Depletion of neutrophils, NET degradation or blockade of NET release inhibited the loss of IgA+ cells and circulating IgA in experimental stroke and MI and in patients with stroke. Our results unveil how tissue-injury-triggered systemic NET release disrupts physiological Ig secretion and how this can be inhibited in patients.


Assuntos
Armadilhas Extracelulares , Infarto do Miocárdio , Neutrófilos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Humanos , Animais , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/metabolismo , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/patologia , Nódulos Linfáticos Agregados/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A/sangue , Idoso , Pessoa de Meia-Idade , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunidade Humoral , Estudos de Casos e Controles , Camundongos , Plasmócitos/imunologia , Plasmócitos/metabolismo
19.
Angiogenesis ; 16(3): 625-37, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23429999

RESUMO

Considerable efforts have been made to amplify angiogenesis under conditions of hypoxia and ischemia by vascular endothelial growth factor (VEGF) delivery, so far with limited success. Ischemic vascular diseases are often associated with hypercholesterolemia. To elucidate whether the exposure to blood lipids influences VEGF responses of microvessels, we characterized effects of low density lipoprotein (LDL) exposure on the proliferation, migration and tube formation of human umbilical vein endothelial cells. By examining the expression, phosphorylation and downstream signals of VEGF's receptor VEGFR2, we characterized mechanisms controlling angiogenic responses following LDL exposure. LDL attenuated endothelial proliferation, migration and tube formation in a dose-dependent way. Reduced abundance of VEGFR2 and VEGFR1 were noticed in LDL-exposed endothelial cells. In subcellular localization studies that we combined with pharmacological experiments, we showed that the loss of VEGFR2 resulted from its internalization and degradation, the latter of which required syntaxin-16-dependent endosome-trans-Golgi network trafficking. As a consequence, VEGFR2 phosphorylation and downstream signals -specifically Akt and ERK1/2 phosphorylation- were attenuated in response to VEGF treatment. VEGF only partly reversed the effects of LDL on angiogenesis under conditions of normoxia and hypoxia. Our results suggest that angiogenic responses to VEGF are compromised in hypercholesterolemia as a consequence of endosomal VEGFR2 degradation.


Assuntos
Hipercolesterolemia/fisiopatologia , Hipóxia/fisiopatologia , Lipoproteínas LDL/farmacologia , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Análise de Variância , Western Blotting , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Primers do DNA/genética , Relação Dose-Resposta a Droga , Endossomos/metabolismo , Imunofluorescência , Vetores Genéticos , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoprecipitação , Lentivirus , Neovascularização Fisiológica/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Rede trans-Golgi/metabolismo
20.
Cell Rep Methods ; 3(3): 100436, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37056368

RESUMO

Light-sheet fluorescence microscopy (LSFM) can produce high-resolution tomograms of tissue vasculature with high accuracy. However, data processing and analysis is laborious due to the size of the datasets. Here, we introduce VesselExpress, an automated software that reliably analyzes six characteristic vascular network parameters including vessel diameter in LSFM data on average computing hardware. VesselExpress is ∼100 times faster than other existing vessel analysis tools, requires no user interaction, and integrates batch processing and parallelization. Employing an innovative dual Frangi filter approach, we show that obesity induces a large-scale modulation of brain vasculature in mice and that seven other major organs differ strongly in their 3D vascular makeup. Hence, VesselExpress transforms LSFM from an observational to an analytical working tool.


Assuntos
Imageamento Tridimensional , Software , Animais , Camundongos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Encéfalo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA