Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 23(1): 418-429, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38038272

RESUMO

The inherent diversity of approaches in proteomics research has led to a wide range of software solutions for data analysis. These software solutions encompass multiple tools, each employing different algorithms for various tasks such as peptide-spectrum matching, protein inference, quantification, statistical analysis, and visualization. To enable an unbiased comparison of commonly used bottom-up label-free proteomics workflows, we introduce WOMBAT-P, a versatile platform designed for automated benchmarking and comparison. WOMBAT-P simplifies the processing of public data by utilizing the sample and data relationship format for proteomics (SDRF-Proteomics) as input. This feature streamlines the analysis of annotated local or public ProteomeXchange data sets, promoting efficient comparisons among diverse outputs. Through an evaluation using experimental ground truth data and a realistic biological data set, we uncover significant disparities and a limited overlap in the quantified proteins. WOMBAT-P not only enables rapid execution and seamless comparison of workflows but also provides valuable insights into the capabilities of different software solutions. These benchmarking metrics are a valuable resource for researchers in selecting the most suitable workflow for their specific data sets. The modular architecture of WOMBAT-P promotes extensibility and customization. The software is available at https://github.com/wombat-p/WOMBAT-Pipelines.


Assuntos
Benchmarking , Proteômica , Fluxo de Trabalho , Software , Proteínas , Análise de Dados
2.
Methods Mol Biol ; 2420: 233-260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34905178

RESUMO

This book chapter discusses proteogenomics data integration and provides an overview into the different omics layer involved in defining the proteome of a living organism. Various aspects of genome variability affecting either the sequence or abundance level of proteins are discussed in this book chapter, such as the effect of single-nucleotide variants or larger genomic structural variants on the proteome. Next, various sequencing technologies are introduced and discussed from a proteogenomics data integration perspective such as those providing short- and long-read sequencing and listing their respective advantages and shortcomings for accurate protein variant prediction using genomic/transcriptomics sequencing data. Finally, the various bioinformatics tools used to process and analyze DNA/RNA sequencing data are discussed with the ultimate goal of obtaining accurately predicted sample-specific protein sequences that can be used as a drop-in replacement in existing approaches for peptide and protein identification using popular database search engines such as MSFragger, SearchGUI/PeptideShaker.


Assuntos
Proteogenômica , Sequência de Aminoácidos , Genoma , Genômica , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA