Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 73(2): 375-391, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38421146

RESUMO

Hundreds or thousands of loci are now routinely used in modern phylogenomic studies. Concatenation approaches to tree inference assume that there is a single topology for the entire dataset, but different loci may have different evolutionary histories due to incomplete lineage sorting (ILS), introgression, and/or horizontal gene transfer; even single loci may not be treelike due to recombination. To overcome this shortcoming, we introduce an implementation of a multi-tree mixture model that we call mixtures across sites and trees (MAST). This model extends a prior implementation by Boussau et al. (2009) by allowing users to estimate the weight of each of a set of pre-specified bifurcating trees in a single alignment. The MAST model allows each tree to have its own weight, topology, branch lengths, substitution model, nucleotide or amino acid frequencies, and model of rate heterogeneity across sites. We implemented the MAST model in a maximum-likelihood framework in the popular phylogenetic software, IQ-TREE. Simulations show that we can accurately recover the true model parameters, including branch lengths and tree weights for a given set of tree topologies, under a wide range of biologically realistic scenarios. We also show that we can use standard statistical inference approaches to reject a single-tree model when data are simulated under multiple trees (and vice versa). We applied the MAST model to multiple primate datasets and found that it can recover the signal of ILS in the Great Apes, as well as the asymmetry in minor trees caused by introgression among several macaque species. When applied to a dataset of 4 Platyrrhine species for which standard concatenated maximum likelihood (ML) and gene tree approaches disagree, we observe that MAST gives the highest weight (i.e., the largest proportion of sites) to the tree also supported by gene tree approaches. These results suggest that the MAST model is able to analyze a concatenated alignment using ML while avoiding some of the biases that come with assuming there is only a single tree. We discuss how the MAST model can be extended in the future.


Assuntos
Classificação , Filogenia , Classificação/métodos , Modelos Genéticos , Simulação por Computador , Software , Animais
2.
Mol Phylogenet Evol ; 196: 108066, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565358

RESUMO

Machine learning has increasingly been applied to a wide range of questions in phylogenetic inference. Supervised machine learning approaches that rely on simulated training data have been used to infer tree topologies and branch lengths, to select substitution models, and to perform downstream inferences of introgression and diversification. Here, we review how researchers have used several promising machine learning approaches to make phylogenetic inferences. Despite the promise of these methods, several barriers prevent supervised machine learning from reaching its full potential in phylogenetics. We discuss these barriers and potential paths forward. In the future, we expect that the application of careful network designs and data encodings will allow supervised machine learning to accommodate the complex processes that continue to confound traditional phylogenetic methods.


Assuntos
Aprendizado de Máquina , Filogenia , Aprendizado de Máquina Supervisionado , Modelos Genéticos
3.
Genetics ; 227(4)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38805070

RESUMO

Detecting introgression between closely related populations or species is a fundamental objective in evolutionary biology. Existing methods for detecting migration and inferring migration rates from population genetic data often assume a neutral model of evolution. Growing evidence of the pervasive impact of selection on large portions of the genome across diverse taxa suggests that this assumption is unrealistic in most empirical systems. Further, ignoring selection has previously been shown to negatively impact demographic inferences (e.g. of population size histories). However, the impacts of biologically realistic selection on inferences of migration remain poorly explored. Here, we simulate data under models of background selection, selective sweeps, balancing selection, and adaptive introgression. We show that ignoring selection sometimes leads to false inferences of migration in popularly used methods that rely on the site frequency spectrum. Specifically, balancing selection and some models of background selection result in the rejection of isolation-only models in favor of isolation-with-migration models and lead to elevated estimates of migration rates. BPP, a method that analyzes sequence data directly, showed false positives for all conditions at recent divergence times, but balancing selection also led to false positives at medium-divergence times. Our results suggest that such methods may be unreliable in some empirical systems, such that new methods that are robust to selection need to be developed.


Assuntos
Modelos Genéticos , Seleção Genética , Introgressão Genética , Genética Populacional/métodos , Evolução Molecular , Animais
4.
Sci Rep ; 14(1): 10514, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714721

RESUMO

Adverse pregnancy outcomes (APOs) affect a large proportion of pregnancies and represent an important cause of morbidity and mortality worldwide. Yet the pathophysiology of APOs is poorly understood, limiting our ability to prevent and treat these conditions. To search for genetic markers of maternal risk for four APOs, we performed multi-ancestry genome-wide association studies (GWAS) for pregnancy loss, gestational length, gestational diabetes, and preeclampsia. We clustered participants by their genetic ancestry and focused our analyses on three sub-cohorts with the largest sample sizes: European, African, and Admixed American. Association tests were carried out separately for each sub-cohort and then meta-analyzed together. Two novel loci were significantly associated with an increased risk of pregnancy loss: a cluster of SNPs located downstream of the TRMU gene (top SNP: rs142795512), and the SNP rs62021480 near RGMA. In the GWAS of gestational length we identified two new variants, rs2550487 and rs58548906 near WFDC1 and AC005052.1, respectively. Lastly, three new loci were significantly associated with gestational diabetes (top SNPs: rs72956265, rs10890563, rs79596863), located on or near ZBTB20, GUCY1A2, and RPL7P20, respectively. Fourteen loci previously correlated with preterm birth, gestational diabetes, and preeclampsia were found to be associated with these outcomes as well.


Assuntos
Diabetes Gestacional , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Resultado da Gravidez , Humanos , Gravidez , Feminino , Resultado da Gravidez/genética , Diabetes Gestacional/genética , Adulto , Pré-Eclâmpsia/genética , Predisposição Genética para Doença , Paridade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA