Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 1018-1027, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28109792

RESUMO

Glioblastoma is the most common malignant brain tumor. The heterogeneity at the cellular level, metabolic specificities and plasticity of the cancer cells are a challenge for glioblastoma treatment. Identification of cancer cells endowed with stem properties and able to propagate the tumor in animal xenografts has opened a new paradigm in cancer therapy. Thus, to increase efficacy and avoid tumor recurrence, therapies need to target not only the differentiated cells of the tumor mass, but also the cancer stem-like cells. These therapies need to be effective on cells present in the hypoxic, slightly acidic microenvironment found within tumors. Such a microenvironment is known to favor more aggressive undifferentiated phenotypes and a slow-growing "quiescent state" that preserves the cells from chemotherapeutic agents, which mostly target proliferating cells. Based on these considerations, we performed a differential screening of the Prestwick Chemical Library of approved drugs on both proliferating and quiescent glioblastoma stem-like cells and identified bisacodyl as a cytotoxic agent with selectivity for quiescent glioblastoma stem-like cells. In the present study we further characterize bisacodyl activity and show its efficacy in vitro on clonal macro-tumorospheres, as well as in vivo in glioblastoma mouse models. Our work further suggests that bisacodyl acts through inhibition of Ca2+ release from the InsP3 receptors.


Assuntos
Bisacodil/farmacologia , Neoplasias Encefálicas/patologia , Sinalização do Cálcio , Glioblastoma/patologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo
2.
Acta Neuropathol ; 135(2): 267-283, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29149419

RESUMO

Although a growing body of evidence indicates that phenotypic plasticity exhibited by glioblastoma cells plays a central role in tumor development and post-therapy recurrence, the master drivers of their aggressiveness remain elusive. Here we mapped the changes in active (H3K4me3) and repressive (H3K27me3) histone modifications accompanying the repression of glioblastoma stem-like cells tumorigenicity. Genes with changing histone marks delineated a network of transcription factors related to cancerous behavior, stem state, and neural development, highlighting a previously unsuspected association between repression of ARNT2 and loss of cell tumorigenicity. Immunohistochemistry confirmed ARNT2 expression in cell sub-populations within proliferative zones of patients' glioblastoma. Decreased ARNT2 expression was consistently observed in non-tumorigenic glioblastoma cells, compared to tumorigenic cells. Moreover, ARNT2 expression correlated with a tumorigenic molecular signature at both the tissue level within the tumor core and at the single cell level in the patients' tumors. We found that ARNT2 knockdown decreased the expression of SOX9, POU3F2 and OLIG2, transcription factors implicated in glioblastoma cell tumorigenicity, and repressed glioblastoma stem-like cell tumorigenic properties in vivo. Our results reveal ARNT2 as a pivotal component of the glioblastoma cell tumorigenic signature, located at a node of a transcription factor network controlling glioblastoma cell aggressiveness.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/metabolismo , Cromatina/metabolismo , Glioblastoma/metabolismo , Idoso , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Células Cultivadas , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/patologia , Código das Histonas , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fatores do Domínio POU/metabolismo , Fatores de Transcrição SOX9/metabolismo
3.
Biochim Biophys Acta ; 1843(10): 2348-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24657812

RESUMO

The interaction of a ligand with a macromolecule has been modeled following different theories. The tenants of the induced fit model consider that upon ligand binding, the protein-ligand complex undergoes a conformational change. In contrast, the allosteric model assumes that only one among different coexisting conformers of a given protein is suitable to bind the ligand optimally. In the present paper, we propose a general framework to model the binding of ligands to a macromolecule. Such framework built on the binding polynomial allows opening new ways to teach in a unified manner ligand binding, enzymology and receptor binding in pharmacology. Moreover, we have developed simple software that allows building the binding polynomial from the schematic description of the biological system under study. Taking calmodulin as a canonical example, we show here that the proposed tool allows the easy retrieval of previously experimental and computational reports. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Assuntos
Algoritmos , Cálcio/metabolismo , Calmodulina/metabolismo , Modelos Estatísticos , Software , Sítio Alostérico , Cálcio/química , Calmodulina/química , Humanos , Cinética , Ligantes , Ligação Proteica
4.
Anal Chem ; 87(17): 8858-66, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26260548

RESUMO

Swiftness, reliability, and sensitivity of live bacteria detection in drinking water are key issues for human safety. The most widespread used indicator of live bacteria is a caged form of carboxyfluorescein in which 3' and 6' hydroxyl groups are masked as acetate esters (CFDA). This derivatization altogether abolishes fluorescein fluorescence and renders the molecule prone to passive diffusion through bacterial membranes. Once in the cytoplasm, acetate groups from CFDA are removed by bacterial hydrolases and fluorescence develops, rendering live but not dead cells detectable. Yet the reagent, carboxyfluorescein diacetate, still possesses a free carboxyl group whose ionization constant is such that the majority of the probe is charged at physiological pH. This unfavors probe permeation through membranes. Here, we prepare several chemical modifications of the carboxyl moiety of CFDA, in order to neutralize its charge and improve its passive diffusion through membranes. We show that the ethylamido derivative of the 5-carboxyl group from 5-carboxy-fluorescein diacetate or from Oregon green diacetate or from Oregon green diacetoxymethylester are stable molecules in biological media, penetrate into bacterial cells and are metabolized into fluorescent species. Only live bacteria are revealed since bleached samples are not labeled. Other derivatives with modification of the 5-carboxyl group with an ester group or with a thiourea-based moiety were almost inefficient probes. The most interesting probe, triembarine (5-ethylaminocarboxy-oregon green, 3',6'diacetoxymethyl ester) leads to 6-10 times more sensitive detection of bacteria as compared to CFDA. Addition of contrast agents (trypan blue or brilliant blue R) improve the signal-to-noise ratio by quenching extracellular fluorescence while bromophenol blue quenches both intracellular and extracellular fluorescence, allowing standardization of detections.


Assuntos
Bactérias/isolamento & purificação , Fluoresceínas/química , Corantes Fluorescentes/química , Viabilidade Microbiana , Bacillus subtilis/isolamento & purificação , Chryseobacterium/isolamento & purificação , Enterobacter cloacae/isolamento & purificação , Escherichia coli/isolamento & purificação , Pseudomonas aeruginosa/isolamento & purificação
5.
Biochim Biophys Acta ; 1833(7): 1720-31, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23333870

RESUMO

The prominent role of Ca(2+) in cell physiology is mediated by a whole set of proteins involved in Ca(2+)-signal generation, deciphering and arrest. Among these intracellular proteins, calmodulin (CaM) known as a prototypical calcium sensor, serves as a ubiquitous carrier of the intracellular calcium signal in all eukaryotic cell types. CaM is assumed to be involved in many diseases including Parkinson, Alzheimer, and rheumatoid arthritis. Defects in some of many reaction partners of CaM might be responsible for disease symptoms. Several classes of drugs bind to CaM with unwanted side effects rather than specific therapeutic use. Thus, it may be more promising to concentrate at searching for pharmacological interferences with the CaM target proteins, in order to find tools for dissecting and investigating CaM-regulatory and modulatory functions in cells. In the present study, we have established a screening assay based on fluorescence polarization (FP) to identify a diverse set of small molecules that disrupt the regulatory function of CaM. The FP-based CaM assay consists in the competition of two fluorescent probes and a library of chemical compounds for binding to CaM. Screening of about 5300 compounds (Strasbourg Academic Library) by displacement of the probe yielded 39 compounds in a first step, from which 6 were selected. Those 6 compounds were characterized by means of calorimetry studies and by competitive displacement of two fluorescent probes interacting with CaM. Moreover, those small molecules were tested for their capability to displace 8 different CaM binding domains from CaM. Our results show that these CaM/small molecules interactions are not functionally equivalent. The strategy that has been set up for CaM is a general model for the development and validation of other CaM interactors, to decipher their mode of action, or rationally design more specific CaM antagonists. Moreover, this strategy may be used for other protein binding assays intended to screen for molecules with preferred binding activity. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.


Assuntos
Cálcio/metabolismo , Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Membrana Celular/metabolismo , Fragmentos de Peptídeos/farmacologia , Sítio Alostérico , Sítios de Ligação , Ligação Competitiva , Canais de Cálcio Tipo L/metabolismo , Polarização de Fluorescência , Humanos , Estrutura Molecular , Biblioteca de Peptídeos , Ligação Proteica , Termodinâmica
6.
Anal Chem ; 86(5): 2510-20, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24479843

RESUMO

Evaluation of important pharmacokinetic properties such as hydrophobicity by high-throughput screening (HTS) methods is a major issue in drug discovery. In this paper, we present measurements of the chromatographic hydrophobicity index (CHI) on a subset of the French chemical library Chimiothèque Nationale (CN). The data were used in quantitative structure-property relationship (QSPR) modeling in order to annotate the CN. An algorithm is proposed to detect problematic molecules with large prediction errors, called outliers. In order to find an explanation for these large discrepancies between predicted and experimental values, these compounds were reanalyzed experimentally. As the first selected outliers indeed had experimental problems, including hydrolysis or sheer absence of expected structure, we herewith propose the use of QSPR as a support tool for quality control of screening data and encourage cooperation between experimental and theoretical teams to improve results. The corrected data were used to produce a model, which is freely available on our web server at http://infochim.u-strasbg.fr/webserv/VSEngine.html .


Assuntos
Controle de Qualidade , Ensaios de Triagem em Larga Escala , Interações Hidrofóbicas e Hidrofílicas , Relação Quantitativa Estrutura-Atividade
7.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 841-842, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28223000
8.
Biochimie ; 213: 54-65, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36931337

RESUMO

The COVID-19 pandemic has given rise to numerous articles from different scientific fields (epidemiology, virology, immunology, airflow physics …) without any effort to link these different insights. In this review, we aim to establish relationships between epidemiological data and the characteristics of the virus strain responsible for the epidemic wave concerned. We have carried out this study on the Wuhan, Alpha, Delta and Omicron strains allowing us to illustrate the evolution of the relationships we have highlighted according to these different viral strains. We addressed the following questions. 1) How can the mean infectious dose (one quantum, by definition in epidemiology) be measured and expressed as an amount of viral RNA molecules (in genome units, GU) or as a number of replicative viral particles (in plaque-forming units, PFU)? 2) How many infectious quanta are exhaled by an infected person per unit of time? 3) How many infectious quanta are exhaled, on average, integrated over the whole contagious period? 4) How do these quantities relate to the epidemic reproduction rate R as measured in epidemiology, and to the viral load, as measured by molecular biological methods? 5) How has the infectious dose evolved with the different strains of SARS-CoV-2? We make use of state-of-the-art modelling, reviewed and explained in the appendix of the article (Supplemental Information, SI), to answer these questions using data from the literature in both epidemiology and virology. We have considered the modification of these relationships according to the vaccination status of the population.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Pandemias , Replicação do DNA , Biologia
10.
Biochim Biophys Acta ; 1813(5): 1059-67, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21115073

RESUMO

Calmodulin (CaM) is a ubiquitous Ca(2+) sensor regulating many biochemical processes in eukaryotic cells. Its interaction with a great variety of different target proteins has led to the fundamental question of its mechanism of action. CaM exhibits four "EF hand" type Ca(2+) binding sites. One way to explain CaM functioning is to consider that the protein interacts differently with its target proteins depending on the number of Ca(2+) ions bound to it. To test this hypothesis, the binding properties of three entities known to interact with CaM (a fluorescent probe and two peptide analogs to the CaM binding sites of death associated protein kinase (DAPK) and of EGFR) were investigated using a quantitative approach based on fluorescence polarization (FP). Probe and peptide interactions with CaM were studied using a titration matrix in which both CaM and calcium concentrations were varied. Experiments were performed with SynCaM, a hybrid CaM able to activate CaM dependent enzymes from mammalian and plant cells. Results show that the interaction between CaM and its targets is regulated by the number of calcium ions bound to the protein, namely one for the DAPK peptide, two for the probe and four for the EGFR peptide. The approach used provides a new tool to elaborate a typology of CaM-targets, based on their recognition by the various CaM-Ca(n) (n=0-4) complexes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Bioquímica/métodos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Sequência de Aminoácidos , Proteínas Quinases Associadas com Morte Celular , Corantes Fluorescentes/metabolismo , Cinética , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Termodinâmica
11.
Med Sci (Paris) ; 28(2): 207-12, 2012 Feb.
Artigo em Francês | MEDLINE | ID: mdl-22377310

RESUMO

Life Sciences are built on observations. Right now, a more systemic approach allowing to integrate the different organizational levels in Biology is emerging. Such an approach uses a set of technologies and strategies allowing to build models that appear to be more and more predictive (omics, bioinformatics, integrative biology, computational biology…). Those models accelerate the rational development of new therapies avoiding an engineering based only on trials and errors. This approach both holistic and predictive radically modifies the discovery and development modalities used today in health industries. Moreover, because of the apparition of new jobs at the interface of disciplines, of private and public sectors and of life sciences and engineering sciences, this implies to rethink the training programs in both their contents and their pedagogical tools.


Assuntos
Descoberta de Drogas/tendências , Biologia Sintética/tendências , Biologia de Sistemas/tendências , Engenharia Biomédica/métodos , Engenharia Biomédica/tendências , Biologia Celular/tendências , Biologia Computacional/métodos , Desenho de Fármacos , Descoberta de Drogas/métodos , Humanos , Modelos Biológicos , Biologia Sintética/métodos , Biologia de Sistemas/métodos
12.
Croat Med J ; 53(4): 298-300, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22911519

RESUMO

Although personalized medicine appears to be a truism, medical doctors are still generally trained in an old-fashioned manner with a focus on reactive treatment. The aim of this paper is to emphasize the evolution of life sciences into a more predictive science, where the development of quantitative models is starting to take place. Personalized medicine is a consequence of such paradigm shift. To keep up with the change, the various actors within the health system must be trained in a completely different manner, focusing on the ability to work as part of a multidisciplinary team that includes medical doctors, nurses, engineers in medical imaging, and others who collect information from patients. In addition, these teams should include modelers that are able to integrate the flood of data into predictive and quantitative models. The challenge of implementing new training methods in line with the shift is a major bottleneck to the emergence and success of personalized medicine in our societies.


Assuntos
Educação Médica , Equipe de Assistência ao Paciente , Medicina de Precisão , Humanos , Comunicação Interdisciplinar , Modelos Biológicos
13.
PNAS Nexus ; 1(5): pgac223, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712338

RESUMO

Preventive measures to reduce infection are needed to combat the COVID-19 pandemic and prepare for a possible endemic phase. Current prophylactic vaccines are highly effective to prevent disease but lose their ability to reduce viral transmission as viral evolution leads to increasing immune escape. Long-term proactive public health policies must therefore complement vaccination with available nonpharmaceutical interventions aiming to reduce the viral transmission risk in public spaces. Here, we revisit the quantitative assessment of airborne transmission risk, considering asymptotic limits that considerably simplify its expression. We show that the aerosol transmission risk is the product of three factors: a biological factor that depends on the viral strain, a hydrodynamical factor defined as the ratio of concentration in viral particles between inhaled and exhaled air, and a face mask filtering factor. The short-range contribution to the risk, present both indoors and outdoors, is related to the turbulent dispersion of exhaled aerosols by air drafts and by convection (indoors), or by the wind (outdoors). We show experimentally that airborne droplets and CO2 molecules present the same dispersion. As a consequence, the dilution factor, and therefore the risk, can be measured quantitatively using the CO2 concentration, regardless of the room volume, the flow rate of fresh air, and the occupancy. We show that the dispersion cone leads to a concentration in viral particles, and therefore a short-range transmission risk, inversely proportional to the squared distance to an infected person and to the flow velocity. The aerosolization criterion derived as an intermediate result, which compares the Stokes relaxation time to the Lagrangian time-scale, may find application for a broad class of aerosol-borne pathogens and pollutants.

15.
Plant Cell Environ ; 34(1): 149-61, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20946589

RESUMO

Plant cells use calcium-based signalling pathways to transduce biotic and/or abiotic stimuli into adaptive responses. However, little is known about the coupling between calcium signalling, transcriptional regulation and the downstream biochemical processes. To understand these relationships better, we challenged tobacco BY-2 cells with cryptogein and evaluated how calcium transients (monitored through the calcium sensor aequorin) impact (1) transcript levels of phenylpropanoid genes (assessed by RT-qPCR); and (2) derived-phenolic compounds (analysed by mass spectrometry). Most genes of the phenylpropanoid pathway were up-regulated by cryptogein and cell wall-bound phenolic compounds accumulated (mainly 5-hydroxyferulic acid). The accumulation of both transcripts and phenolics was calcium-dependent. The transcriptional regulation of phenylpropanoid genes was correlated in a non-linear manner with stimulus intensity and with components of the cryptogein-induced calcium signature. In addition, calmodulin inhibitors increased the sensitivity of cells to low concentrations of cryptogein. These results led us to propose a model of coupling between the cryptogein signal, calcium signalling and the transcriptional response, exerting control of transcription through the coordinated action of two decoding modules exerting opposite effects.


Assuntos
Proteínas de Algas/metabolismo , Cálcio/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Propanóis/metabolismo , Proteínas de Algas/farmacologia , Cálcio/metabolismo , Calmodulina/antagonistas & inibidores , Células Cultivadas , Ácidos Cumáricos/metabolismo , Proteínas Fúngicas , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Imunidade Vegetal , Plantas Geneticamente Modificadas , Análise de Componente Principal , Propionatos , RNA de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Nicotiana/genética , Regulação para Cima
17.
Biochim Biophys Acta ; 1793(6): 1068-77, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19133300

RESUMO

Calcium (Ca2+) is a ubiquitous second messenger which promotes cell responses through transient changes in intracellular concentrations. The prominent role of Ca2+ in cell physiology is mediated by a whole set of proteins constituting a Ca2+-signalling toolkit involved in Ca2+-signal generation, deciphering and arrest. The different Ca2+-signalosomes deliver Ca2+-signals with spatial and temporal dynamics to control the function of specific cell types. Among the intracellular proteins involved in Ca2+-signal deciphering, calmodulin (CaM) plays a pivotal role in controlling Ca2+-homeostasis and downstream Ca2+-based signalling events. Due to its ubiquitous expression in eukaryotic cells and the variety of proteins it interacts with, CaM is central in Ca2+-signalling networks. For these reasons, it is expected that disrupting or modifying CaM interactions with its target proteins will affect Ca2+-homeostasis and cellular responses. The resulting calcium response will vary depending on which interactions between CaM and target proteins are altered by the molecules and on the specific Ca2+-toolkit expressed in a given cell, even in the resting state. In the present paper, the effect of six classical CaM interactors (W5, W7, W12, W13, bifonazole and calmidazolium) was studied on Ca2+-signalling in tumor initiating cells isolated from human glioblastoma (TG1) and tobacco cells (BY-2) using the fluorescent Ca2+-sensitive Indo-1 dye and aequorin, respectively. Various Ca2+-fingerprints were obtained depending both on the CaM interactor used and the cell type investigated. These data demonstrate that interaction between the antagonists and CaM results in a differential inhibition of CaM-dependent proteins involved in Ca2+-signal regulation. In addition, the distinct Ca2+-fingerprints in tobacco and human tumor initiating glioblastoma cells induced by a given CaM interactor highlight the specificity of the Ca2+-signalosome in eukaryotic cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Células Eucarióticas/metabolismo , Anisotropia , Calmodulina/antagonistas & inibidores , Linhagem Celular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Imidazóis/química , Imidazóis/metabolismo , Estrutura Molecular , Espectrometria de Fluorescência , Sulfonamidas/química , Sulfonamidas/metabolismo , Nicotiana
18.
BMC Cancer ; 10: 66, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181261

RESUMO

BACKGROUND: Tumor initiating cells (TICs) provide a new paradigm for developing original therapeutic strategies. METHODS: We screened for TICs in 47 human adult brain malignant tumors. Cells forming floating spheres in culture, and endowed with all of the features expected from tumor cells with stem-like properties were obtained from glioblastomas, medulloblastoma but not oligodendrogliomas. RESULTS: A long-term self-renewal capacity was particularly observed for cells of malignant glio-neuronal tumors (MGNTs). Cell sorting, karyotyping and proteomic analysis demonstrated cell stability throughout prolonged passages. Xenografts of fewer than 500 cells in Nude mouse brains induced a progressively growing tumor. CD133, CD15/LeX/Ssea-1, CD34 expressions, or exclusion of Hoechst dye occurred in subsets of cells forming spheres, but was not predictive of their capacity to form secondary spheres or tumors, or to resist high doses of temozolomide. CONCLUSIONS: Our results further highlight the specificity of a subset of high-grade gliomas, MGNT. TICs derived from these tumors represent a new tool to screen for innovative therapies.


Assuntos
Antígenos CD34/biossíntese , Antígenos CD/biossíntese , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glicoproteínas/biossíntese , Antígenos CD15/biossíntese , Células-Tronco Neoplásicas/citologia , Neurônios/patologia , Antígeno AC133 , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Peptídeos , Proteômica/métodos
19.
Bioorg Med Chem ; 18(22): 7900-10, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20951593

RESUMO

Schistosomiasis is a major tropical parasitic disease. For its treatment, praziquantel remains the only effective drug available and the dependence on this sole chemotherapy emphasizes the urgent need for new drugs to control this neglected disease. In this context, the newly characterized Schistosoma mansoni NAD(+) catabolizing enzyme (SmNACE) represents a potentially attractive drug target. This potent NAD(+)glycohydrolase, which is localized to the outer surface (tegument) of the adult parasite, is presumably involved in the parasite survival by manipulating the host's immune regulatory pathways. In an effort to identify SmNACE inhibitors, we have developed a sensitive and robust fluorometric high-throughput screening assay. The implementation of this assay to the screening of a highly diverse academic chemical library of 14,300 molecules yielded, after secondary assays and generation of dose-response curves, the identification of two natural product inhibitors, cyanidin and delphinidin. These confirmed hits inhibit SmNACE with IC(50) values in the low micromolar range. To rationalize the structure-activity relationship, several related flavonoids were tested, thereby leading to the identification of 15 additional natural product inhibitors. A selection of representative flavonoid inhibitors indicated that although they also inhibit the homologous human CD38, a selectivity in favor of SmNACE could be reached. Docking studies indicated that these inhibitors mimic the binding mode of the enzyme substrate NAD(+) and suggested the pharmacophoric features required for SmNACE active site recognition.


Assuntos
Inibidores Enzimáticos/química , Flavonoides/química , NAD+ Nucleosidase/química , Schistosoma mansoni/enzimologia , Esquistossomicidas/química , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Flavonoides/síntese química , Flavonoides/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , NAD+ Nucleosidase/metabolismo , Esquistossomicidas/síntese química , Esquistossomicidas/farmacologia , Relação Estrutura-Atividade
20.
BMC Neurol ; 9: 46, 2009 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-19703283

RESUMO

BACKGROUND: Pharmacological high-throughput screening (HTS) represents a powerful strategy for drug discovery in genetic diseases, particularly when the full spectrum of pathological dysfunctions remains unclear, such as in Friedreich ataxia (FRDA). FRDA, the most common recessive ataxia, results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur cluster (ISC) proteins activity, due to a partial loss of frataxin function, a mitochondrial protein proposed to function as an iron-chaperone for ISC biosynthesis. In the absence of measurable catalytic function for frataxin, a cell-based assay is required for HTS assay. METHODS: Using a targeted ribozyme strategy in murine fibroblasts, we have developed a cellular model with strongly reduced levels of frataxin. We have used this model to screen the Prestwick Chemical Library, a collection of one thousand off-patent drugs, for potential molecules for FRDA. RESULTS: The frataxin deficient cell lines exhibit a proliferation defect, associated with an ISC enzyme deficit. Using the growth defect as end-point criteria, we screened the Prestwick Chemical Library. However no molecule presented a significant and reproducible effect on the proliferation rate of frataxin deficient cells. Moreover over numerous passages, the antisense ribozyme fibroblast cell lines revealed an increase in frataxin residual level associated with the normalization of ISC enzyme activities. However, the ribozyme cell lines and FRDA patient cells presented an increase in Mthfd2 transcript, a mitochondrial enzyme that was previously shown to be upregulated at very early stages of the pathogenesis in the cardiac mouse model. CONCLUSION: Although no active hit has been identified, the present study demonstrates the feasibility of using a cell-based approach to HTS for FRDA. Furthermore, it highlights the difficulty in the development of a stable frataxin-deficient cell model, an essential condition for productive HTS in the future.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Ataxia de Friedreich/tratamento farmacológico , Proteínas de Ligação ao Ferro/genética , Animais , Western Blotting , Linhagem Celular/citologia , Proliferação de Células , Células Cultivadas , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Técnicas de Silenciamento de Genes , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA