Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Econ Entomol ; 102(4): 1497-505, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19736762

RESUMO

Cotton, Gossypium hirsutum L., plants expressing Cry1Ac and Cry1F insecticidal crystal proteins of Bacillus thuringiensis Berliner (Bt) were evaluated against selected lepidopteran pests including fall armyworm, Spodoptera frugiperda (J. E. Smith), beet armyworm, Spodoptera exigua (Hübner), and soybean looper, Pseudoplusia includens (Walker). Studies were conducted in a range of environments, challenging various cotton tissue types from several varieties containing a combination of Cry1Ac and Cry1F proteins. In fresh tissue bioassays of mature leaves and squares (flower buds) and in artificial field infestations of white flowers, plants containing Cry1Ac:Cry1F significantly reduced levels of damage (leaf defoliation, bract feeding, penetrated squares and bolls, and boll abscission) and induced significantly greater mortality (90-100%) of fall armyworm compared with that on non-Bt cotton plants. Plants containing Cry1Ac:Cry1F conferred high levels (100%) of soybean looper mortality and low levels (0.2%) of leaf defoliation compared with non-Bt cotton. Beet armyworm was relatively less sensitive to Cry1Ac:Cry1F cotton plants compared with fall armyworm and soybean looper. However, beet armyworm larval development was delayed 21 d after infestation (DAI), and ingestion of plant tissue was inhibited (14 and 21 DAI) on the Cry1Ac:Cry1F plants compared with that on non-Bt cotton plants. These results show Cry1Ac:Cry1F cotton varieties can be an effective component in a management program for these lepidopteran pest species. Differential susceptibility of fall armyworm, beet armyworm, and soybean looper larvae to Cry1Ac:Cry1F cotton reinforces the need to sample during plant development and respond with a foliar insecticide if local action thresholds are exceeded.


Assuntos
Proteínas de Bactérias , Endotoxinas , Gossypium/genética , Proteínas Hemolisinas , Controle de Insetos/métodos , Mariposas , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Gossypium/metabolismo , Proteínas Hemolisinas/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Estados Unidos
2.
Environ Entomol ; 37(5): 1332-43, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19036214

RESUMO

Insect herbivory has variable consequences on plant physiology, growth, and reproduction. In some plants, herbivory reduces photosynthetic rate (Pn) activity on remaining tissue of injured leaves. We sought to better understand the influence of leaf injury on Pn of common milkweed, Asclepias syriaca (Asclepiadaceae), leaves. Initially, we tested whether Pn reductions occurred after insect herbivory or mechanical injury. We also (1) examined the duration of photosynthetic recovery, (2) compared mechanical injury with insect herbivory, (3) studied the relationship between leaf Pn with leaf injury intensity, and (4) considered uninjured leaf compensatory Pn responses neighboring an injured leaf. Leaf Pn was significantly reduced on mechanically injured or insect-fed leaves in all reported experiments except one, so some factor(s) (cardiac glycoside induction, reproductive investment, and water stress) likely interacts with leaf injury to influence whether Pn impairment occurs. Milkweed tussock moth larval herbivory, Euchaetes egle L. (Arctiidae), impaired leaf Pn more severely than mechanical injury in one experiment. Duration of Pn impairment lasted > 5 d to indicate high leaf Pn sensitivity to injury, but Pn recovery occurred within 13 d in one experiment. The degree of Pn reduction was more severe from E. egle herbivory than similar levels of mechanical tissue removal. Negative linear relationships characterized leaf Pn with percentage tissue loss from single E. egle-fed leaves and mechanically injured leaves and suggested that the signal to trigger leaf Pn impairment on remaining tissue of an injured leaf was amplified by additional tissue loss. Finally, neighboring uninjured leaves to an E. egle-fed leaf had a small (approximately 10%) degree of compensatory Pn to partly offset tissue loss and injured leaf Pn impairment.


Assuntos
Asclepias/metabolismo , Interações Hospedeiro-Parasita , Mariposas/fisiologia , Fotossíntese , Folhas de Planta/metabolismo , Animais , Asclepias/parasitologia , Larva/fisiologia , Folhas de Planta/parasitologia
3.
J Econ Entomol ; 93(3): 788-94, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10902331

RESUMO

Insecticides are used extensively on lettuce, Lactuca sativa L., grown in southwestern Arizona because of heavy insect pressure that can potentially reduce lettuce productivity. Multiple sprays are made per season to manage these insects in lettuce. One of the major concerns related to extensive insecticide applications in lettuce is the potential subtle impact of insecticides that may reduce lettuce photosynthesis and yield. We conducted field and greenhouse experiments to examine the impact of multiple insecticides and surfactant spray applications on lettuce photosynthesis and yield. Lettuce was planted in the field in 1998, insecticides and surfactant were applied, and lettuce gas-exchange and dry weights were determined. Treatments were arranged in a split-plot consisting of insecticides as main plot and surfactant as subplot treatments in a randomized complete block design with four replications. Photosynthetic rates of lettuce were significantly reduced by endosulfan, methomyl, acephate, and surfactant at seedling stage 4 h and 2 d after the spray application was made. However, the reduction in lettuce photosynthesis by these insecticides and surfactant was only transient, and lettuce photosynthesis recovered 5 d after the spray application was made. Photosynthetic rates were not altered by zeta-cypermethrin, emamectin benzoate, and spinosad at the seedling stage. Insecticides or surfactant (Kinetic, a nonionic surfactant) did not significantly affect lettuce photosynthesis after rosette formation. In addition, lettuce dry weight was not significantly altered. These studies suggest that lettuce photosynthesis may be susceptible to some insecticides at the seedling stage. Consequently, we found that biorational insecticides, introduced to manage insect pests in lettuce, have no influence on lettuce physiology at the seedling stage, unlike the chlorinated hydrocarbons, organophosphates, or carbamates tested in this study. In a greenhouse study, we found that lettuce photosynthesis and yield were not altered by Bacillus thuringiensis application. Our results indicate that B. thuringiensis and the newer insecticides, particularly biorationals, can be used to manage lettuce insect pests without significantly altering lettuce gas-exchange and yield.


Assuntos
Controle de Insetos/métodos , Inseticidas , Lactuca/fisiologia , Tensoativos , Animais , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA