Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(40)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38936395

RESUMO

The mechanism behind mutual recognition of homologous DNA sequences prior to genetic recombination is one of the remaining puzzles in molecular biology. Leading models of homology recognition, based on classical electrostatics, neglect the short-range nonlocal screening effects arising from structured water around DNA, and hence may only provide insight for relatively large separations between interacting DNAs. We elucidate the role of the effects of the nonlocal dielectric response of water on DNA-DNA interaction and show that these can dramatically enhance the driving force for recognition.


Assuntos
DNA , Água , DNA/química , Água/química , Conformação de Ácido Nucleico , Eletricidade Estática , Modelos Moleculares , Homologia de Sequência do Ácido Nucleico
2.
Cell Discov ; 10(1): 62, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862506

RESUMO

Membrane budding, which underlies fundamental processes like endocytosis, intracellular trafficking, and viral infection, is thought to involve membrane coat-forming proteins, including the most observed clathrin, to form Ω-shape profiles and helix-forming proteins like dynamin to constrict Ω-profiles' pores and thus mediate fission. Challenging this fundamental concept, we report that polymerized clathrin is required for Ω-profiles' pore closure and that clathrin around Ω-profiles' base/pore region mediates pore constriction/closure in neuroendocrine chromaffin cells. Mathematical modeling suggests that clathrin polymerization at Ω-profiles' base/pore region generates forces from its intrinsically curved shape to constrict/close the pore. This new fission function may exert broader impacts than clathrin's well-known coat-forming function during clathrin (coat)-dependent endocytosis, because it underlies not only clathrin (coat)-dependent endocytosis, but also diverse endocytic modes, including ultrafast, fast, slow, bulk, and overshoot endocytosis previously considered clathrin (coat)-independent in chromaffin cells. It mediates kiss-and-run fusion (fusion pore closure) previously considered bona fide clathrin-independent, and limits the vesicular content release rate. Furthermore, analogous to results in chromaffin cells, we found that clathrin is essential for fast and slow endocytosis at hippocampal synapses where clathrin was previously considered dispensable, suggesting clathrin in mediating synaptic vesicle endocytosis and fission. These results suggest that clathrin and likely other intrinsically curved coat proteins are a new class of fission proteins underlying vesicle budding and fusion. The half-a-century concept and studies that attribute vesicle-coat contents' function to Ω-profile formation and classify budding as coat-protein (e.g., clathrin)-dependent or -independent may need to be re-defined and re-examined by considering clathrin's pivotal role in pore constriction/closure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA