Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
RNA Biol ; 18(11): 1931-1952, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33629931

RESUMO

Noncoding RNAs (ncRNA) have emerged as important components of regulatory networks governing bacterial physiology and virulence. Previous deep-sequencing analysis identified a large diversity of ncRNAs in the human enteropathogen Clostridioides (Clostridium) difficile. Some of them are trans-encoded RNAs that could require the RNA chaperone protein Hfq for their action. Recent analysis suggested a pleiotropic role of Hfq in C. difficile with the most pronounced effect on sporulation, a key process during the infectious cycle of this pathogen. However, a global view of RNAs interacting with C. difficile Hfq is missing. In the present study, we performed RNA immunoprecipitation high-throughput sequencing (RIP-Seq) to identify Hfq-associated RNAs in C. difficile. Our work revealed a large set of Hfq-interacting mRNAs and ncRNAs, including mRNA leaders and coding regions, known and potential new ncRNAs. In addition to trans-encoded RNAs, new categories of Hfq ligands were found including cis-antisense RNAs, riboswitches and CRISPR RNAs. ncRNA-mRNA and ncRNA-ncRNA pairings were postulated through computational predictions. Investigation of one of the Hfq-associated ncRNAs, RCd1, suggests that this RNA contributes to the control of late stages of sporulation in C. difficile. Altogether, these data provide essential molecular basis for further studies of post-transcriptional regulatory network in this enteropathogen.


Assuntos
Clostridioides difficile/crescimento & desenvolvimento , Clostridioides/fisiologia , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Esporos Bacterianos/fisiologia , Virulência , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Genoma Bacteriano , Fator Proteico 1 do Hospedeiro/genética , Humanos , RNA Bacteriano/genética
2.
Nucleic Acids Res ; 46(9): 4733-4751, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29529286

RESUMO

Clostridium difficile, a major human enteropathogen, must cope with foreign DNA invaders and multiple stress factors inside the host. We have recently provided an experimental evidence of defensive function of the C. difficile CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system important for its survival within phage-rich gut communities. Here, we describe the identification of type I toxin-antitoxin (TA) systems with the first functional antisense RNAs in this pathogen. Through the analysis of deep-sequencing data, we demonstrate the general co-localization with CRISPR arrays for the majority of sequenced C. difficile strains. We provide a detailed characterization of the overlapping convergent transcripts for three selected TA pairs. The toxic nature of small membrane proteins is demonstrated by the growth arrest induced by their overexpression. The co-expression of antisense RNA acting as an antitoxin prevented this growth defect. Co-regulation of CRISPR-Cas and type I TA genes by the general stress response Sigma B and biofilm-related factors further suggests a possible link between these systems with a role in recurrent C. difficile infections. Our results provide the first description of genomic links between CRISPR and type I TA systems within defense islands in line with recently emerged concept of functional coupling of immunity and cell dormancy systems in prokaryotes.


Assuntos
Sistemas CRISPR-Cas , Clostridioides difficile/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas Toxina-Antitoxina/genética , Genoma Bacteriano , Genômica , Estabilidade de RNA , RNA Bacteriano/metabolismo
3.
Nucleic Acids Res ; 45(5): 2746-2756, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28426097

RESUMO

Polyadenylation is thought to be involved in the degradation and quality control of bacterial RNAs but relatively few examples have been investigated. We used a combination of 5΄-tagRACE and RNA-seq to analyze the total RNA content from a wild-type strain and from a poly(A)polymerase deleted mutant. A total of 178 transcripts were either up- or down-regulated in the mutant when compared to the wild-type strain. Poly(A)polymerase up-regulates the expression of all genes related to the FliA regulon and several previously unknown transcripts, including numerous transporters. Notable down-regulation of genes in the expression of antigen 43 and components of the type 1 fimbriae was detected. The major consequence of the absence of poly(A)polymerase was the accumulation of numerous sRNAs, antisense transcripts, REP sequences and RNA fragments resulting from the processing of entire transcripts. A new algorithm to analyze the position and composition of post-transcriptional modifications based on the sequence of unencoded 3΄-ends, was developed to identify polyadenylated molecules. Overall our results shed new light on the broad spectrum of action of polyadenylation on gene expression and demonstrate the importance of poly(A) dependent degradation to remove structured RNA fragments.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Poliadenilação , Polinucleotídeo Adenililtransferase/metabolismo , RNA Bacteriano/metabolismo , Toxinas Bacterianas/biossíntese , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Mutação , Polinucleotídeo Adenililtransferase/genética , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo
4.
RNA ; 22(10): 1560-73, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27495318

RESUMO

The rpsO-pnp operon encodes ribosomal protein S15 and polynucleotide phosphorylase, a major 3'-5' exoribonuclease involved in mRNA decay in Escherichia coli The gene for the SraG small RNA is located between the coding regions of the rpsO and pnp genes, and it is transcribed in the opposite direction relative to the two genes. No function has been assigned to SraG. Multiple levels of post-transcriptional regulation have been demonstrated for the rpsO-pnp operon. Here we show that SraG is a new factor affecting pnp expression. SraG overexpression results in a reduction of pnp expression and a destabilization of pnp mRNA; in contrast, inhibition of SraG transcription results in a higher level of the pnp transcript. Furthermore, in vitro experiments indicate that SraG inhibits translation initiation of pnp Together, these observations demonstrate that SraG participates in the post-transcriptional control of pnp by a direct antisense interaction between SraG and PNPase RNAs. Our data reveal a new level of regulation in the expression of this major exoribonuclease.


Assuntos
Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Bacteriano/genética , RNA Interferente Pequeno/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Homeostase , Óperon , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
5.
RNA ; 20(10): 1567-78, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25147238

RESUMO

A gene for the Hfq protein is present in the majority of sequenced bacterial genomes. Its characteristic hexameric ring-like core structure is formed by the highly conserved N-terminal regions. In contrast, the C-terminal forms an extension, which varies in length, lacks homology, and is predicted to be unstructured. In Gram-negative bacteria, Hfq facilitates the pairing of sRNAs with their mRNA target and thus affects gene expression, either positively or negatively, and modulates sRNA degradation. In Gram-positive bacteria, its role is still poorly characterized. Numerous sRNAs have been detected in many Gram-positive bacteria, but it is not yet known whether these sRNAs act in association with Hfq. Compared with all other Hfqs, the C. difficile Hfq exhibits an unusual C-terminal sequence with 75% asparagine and glutamine residues, while the N-terminal core part is more conserved. To gain insight into the functionality of the C. difficile Hfq (Cd-Hfq) protein in processes regulated by sRNAs, we have tested the ability of Cd-Hfq to fulfill the functions of the E. coli Hfq (Ec-Hfq) by examining various functions associated with Hfq in both positive and negative controls of gene expression. We found that Cd-Hfq substitutes for most but not all of the tested functions of the Ec-Hfq protein. We also investigated the role of the C-terminal part of the Hfq proteins. We found that the C-terminal part of both Ec-Hfq and Cd-Hfq is not essential but contributes to some functions of both the E. coli and C. difficile chaperons.


Assuntos
Clostridioides difficile/genética , Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/genética , RNA Mensageiro/genética , Clostridioides difficile/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fenótipo , Ligação Proteica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , beta-Galactosidase/metabolismo
6.
Biochimie ; 217: 54-65, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37482092

RESUMO

Bacteria can rapidly adapt to changes in their environment thanks to the innate flexibility of their genetic expression. The high turnover rate of RNAs, in particular messenger and regulatory RNAs, provides an important contribution to this dynamic adjustment. Recycling of RNAs is ensured by ribonucleases, among which RNase III is the focus of this review. RNase III enzymes are highly conserved from prokaryotes to eukaryotes and have the specific ability to cleave double-stranded RNAs. The role of RNase III in bacterial physiology has remained poorly explored for a long time. However, transcriptomic approaches recently uncovered a large impact of RNase III in gene expression in a wide range of bacteria, generating renewed interest in the physiological role of RNase III. In this review, we first describe the RNase III targets identified from global approaches in 8 bacterial species within 4 Phyla. We then present the conserved and unique functions of bacterial RNase III focusing on growth, resistance to stress, biofilm formation, motility and virulence. Altogether, this review highlights the underestimated impact of RNase III in bacterial adaptation.


Assuntos
Bactérias , Ribonuclease III , Ribonuclease III/genética , Ribonuclease III/metabolismo , Bactérias/genética , Bactérias/metabolismo , Perfilação da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
7.
Mol Microbiol ; 83(2): 436-51, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22142150

RESUMO

Polyadenylation is a universal post-transcriptional modification involved in degradation and quality control of bacterial RNAs. In Escherichia coli, it is admitted that any accessible RNA 3' end can be tagged by a poly(A) tail for decay. However, we do not have yet an overall view of the population of polyadenylated molecules. The sampling of polyadenylated RNAs presented here demonstrates that rRNA fragments and tRNA precursors originating from the internal spacer regions of the rrn operons, in particular, rrnB are abundant poly(A) polymerase targets. Focused analysis showed that Glu tRNA precursors originating from the rrnB and rrnG transcripts exhibit long 3' trailers that are primarily removed by PNPase and to a lesser extent by RNase II and poly(A) polymerase. Moreover, 3' trimming by exoribonucleases precedes 5' end maturation by RNase P. Interestingly, characterization of RNA fragments that accumulate in a PNPase deficient strain showed that Glu tRNA precursors still harbouring the 5' leader can be degraded by a 3' to 5' quality control pathway involving poly(A) polymerase. This demonstrates that the surveillance of tRNA maturation described for a defective tRNA also applies to a wild-type tRNA.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , RNA Bacteriano/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Estabilidade de RNA
8.
RNA Biol ; 10(4): 602-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23392248

RESUMO

Discovered in eukaryotes as a modification essential for mRNA function, polyadenylation was then identified as a means used by all cells to destabilize RNA. In Escherichia coli, most accessible 3' RNA extremities are believed to be potential targets of poly(A) polymerase I. However, some RNAs might be preferentially adenylated. After a short statement of the current knowledge of poly(A) metabolism, we discuss how Hfq could affect recognition and polyadenylation of RNA terminated by Rho-independent terminators. Comparison of RNA terminus leads to the proposal that RNAs harboring 3' terminal features required for Hfq binding are not polyadenylated, whereas those lacking these structural elements can gain the oligo(A) tails that initiate exonucleolytic degradation. We also speculate that Hfq stimulates the synthesis of longer tails that could be used as Hfq-binding sites involved in non-characterized functions of Hfq-dependent sRNAs.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Exorribonucleases/química , Exorribonucleases/metabolismo , Fator Proteico 1 do Hospedeiro/química , Poli A/metabolismo , Poliadenilação , Estabilidade de RNA , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/química , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Exorribonucleases/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Poli A/química , Poli A/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/química , Proteínas Repressoras/química , Fator Rho/genética , Alinhamento de Sequência
9.
Microorganisms ; 10(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35456749

RESUMO

Bacteria thrive in ever-changing environments by quickly remodeling their transcriptome and proteome via complex regulatory circuits. Regulation occurs at multiple steps, from the transcription of genes to the post-translational modification of proteins, via both protein and RNA regulators. At the post-transcriptional level, the RNA fate is balanced through the binding of ribosomes, chaperones and ribonucleases. We aim to decipher the role of the double-stranded-RNA-specific endoribonuclease RNase III and to evaluate its biological importance in the adaptation to modifications of the environment. The inactivation of RNase III affects a large number of genes and leads to several phenotypical defects, such as reduced thermotolerance in Escherichia coli. In this study, we reveal that RNase III inactivation leads to an increased sensitivity to temperature shock and oxidative stress. We further show that RNase III is important for the induction of the heat shock sigma factor RpoH and for the expression of the superoxide dismutase SodA.

10.
mBio ; 13(5): e0098122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36000733

RESUMO

In order to respond to ever-changing environmental cues, bacteria display resilient regulatory mechanisms controlling gene expression. At the post-transcriptional level, this is achieved by a combination of RNA-binding proteins, such as ribonucleases (RNases), and regulatory RNAs, including antisense RNAs (asRNAs). Bound to their complementary mRNA, asRNAs are primary targets for the double-strand-specific endoribonuclease, RNase III. Taking advantage of our own and previously published transcriptomic data sets obtained in strains inactivated for RNase III, we selected several candidate asRNAs and confirmed the existence of RNase III-sensitive asRNAs for crp, ompR, phoP, and flhD genes, all encoding global regulators of gene expression in Escherichia coli. Using FlhD, a component of the master regulator of motility (FlhD4C2), as our model, we demonstrate that the asRNA AsflhD, transcribed from the coding sequence of flhD, is involved in the fine-tuning of flhD expression and thus participates in the control of motility. IMPORTANCE The role of antisense RNAs (asRNAs) in the regulation of gene expression remains largely unexplored in bacteria. Here, we confirm that asRNAs can be part of layered regulatory networks, since some are found opposite to genes encoding global regulators. In particular, we show how an antisense RNA (AsflhD) to the flhD gene, encoding the transcription factor serving as the primary regulator of bacterial swimming motility (FlhD4C2), controls flhD expression, which in turn affects the expression of other genes of the motility cascade. The role of AsflhD highlights the importance of fine-tuning mechanisms mediated by asRNAs in the control of complex regulatory networks.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Antissenso/genética , Regulação Bacteriana da Expressão Gênica , Ribonuclease III/genética , Ribonuclease III/metabolismo , Fatores de Transcrição/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
11.
Biotechnol Adv ; 54: 107805, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34302931

RESUMO

Metabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E. coli that metabolic engineering strategies should take into account. We first discuss how mRNA degradation interacts with transcription and translation, two other gene expression processes, to balance transcription regulation and remove poorly translated mRNAs. The many reciprocal interactions between mRNA degradation and metabolism are also highlighted: metabolic activity can be controlled by changes in mRNA degradation and in return, the activity of the mRNA degradation machinery is controlled by metabolic factors. The mathematical models of the crosstalk between mRNA degradation dynamics and other cellular processes are presented and discussed with a view towards novel mRNA degradation-based metabolic engineering strategies. We show finally that mRNA degradation-based strategies have already successfully been applied to improve heterologous protein synthesis. Overall, this review underlines how important mRNA degradation is in regulating E. coli metabolism and identifies mRNA degradation as a key target for innovative metabolic engineering strategies in biotechnology.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Redes e Vias Metabólicas , Estabilidade de RNA , Biologia de Sistemas
12.
RNA ; 15(2): 316-26, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19103951

RESUMO

Polyadenylation is an important factor controlling RNA degradation and RNA quality control mechanisms. In this report we demonstrate for the first time that RNase R has in vivo affinity for polyadenylated RNA and can be a key enzyme involved in poly(A) metabolism. RNase II and PNPase, two major RNA exonucleases present in Escherichia coli, could not account for all the poly(A)-dependent degradation of the rpsO mRNA. RNase II can remove the poly(A) tails but fails to degrade the mRNA as it cannot overcome the RNA termination hairpin, while PNPase plays only a modest role in this degradation. We now demonstrate that in the absence of RNase E, RNase R is the relevant factor in the poly(A)-dependent degradation of the rpsO mRNA. Moreover, we have found that the RNase R inactivation counteracts the extended degradation of this transcript observed in RNase II-deficient cells. Elongated rpsO transcripts harboring increasing poly(A) tails are specifically recognized by RNase R and strongly accumulate in the absence of this exonuclease. The 3' oligo(A) extension may stimulate the binding of RNase R, allowing the complete degradation of the mRNA, as RNase R is not susceptible to RNA secondary structures. Moreover, this regulation is shown to occur despite the presence of PNPase. Similar results were observed with the rpsT mRNA. This report shows that polyadenylation favors in vivo the RNase R-mediated pathways of RNA degradation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Exorribonucleases/metabolismo , Poli A/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Exorribonucleases/genética , Poliadenilação
13.
Microorganisms ; 9(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946208

RESUMO

The ribosome is the universal catalyst for protein synthesis. Despite extensive studies, the diversity of structures and functions of this ribonucleoprotein is yet to be fully understood. Deciphering the biogenesis of the ribosome in a step-by-step manner revealed that this complexity is achieved through a plethora of effectors involved in the maturation and assembly of ribosomal RNAs and proteins. Conserved from bacteria to eukaryotes, double-stranded specific RNase III enzymes play a large role in the regulation of gene expression and the processing of ribosomal RNAs. In this review, we describe the canonical role of RNase III in the biogenesis of the ribosome comparing conserved and unique features from bacteria to eukaryotes. Furthermore, we report additional roles in ribosome biogenesis re-enforcing the importance of RNase III.

14.
BMC Mol Biol ; 11: 17, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20167073

RESUMO

BACKGROUND: The bacterial Lsm protein, Hfq, is an RNA chaperone involved in many reactions related to RNA metabolism, such as replication and stability, control of small RNA activity and polyadenylation. Despite this wide spectrum of known functions, the global role of Hfq is almost certainly undervalued; its capacity to bind DNA and to interact with many other proteins are only now beginning to be taken into account. RESULTS: The role of Hfq in the maturation and degradation of the rpsO mRNA of E. coli was investigated in vivo. The data revealed a decrease in rpsO mRNA abundance concomitant to an increase in its stability when Hfq is absent. This indicates that the change in mRNA levels in hfq mutants does not result from its modification of RNA stability. Moreover, a series of independent experiments have revealed that the decrease in mRNA level is not a consequence of a reduction of translation efficiency and that Hfq is not directly implicated in translational control of rpsO expression. Reduced steady-state mRNA levels in the absence of Hfq were also shown for rpsT, rpsB and rpsB-tsf, but not for lpp, pnp or tRNA transcripts. The abundance of chimeric transcripts rpsO-lacZ and rpsB-lacZ, whose expression was driven by rpsO and rpsB promoters, respectively, was also lower in the hfq null-mutants, while the beta-galactosidase yield remained about the same as in the parent wild-type strain. CONCLUSIONS: The data obtained suggest that alteration of rpsO, rpsT and rpsB-tsf transcript levels observed under conditions of Hfq deficiency is not caused by the post-transcriptional events, such as mRNA destabilization or changes in translation control, and may rather result from changes in transcriptional activity. So far, how Hfq affects transcription remains unclear. We propose that one of the likely mechanisms of Hfq-mediated modulation of transcription might operate early in the elongation step, when interaction of Hfq with a nascent transcript would help to overcome transcription pauses and to prevent preliminary transcript release.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Mensageiro/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Mutação , Estabilidade de RNA
15.
Nucleic Acids Res ; 36(8): 2570-80, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18334534

RESUMO

In Escherichia coli the glmS gene encoding glucosamine 6-phosphate (GlcN-6-P) synthase GlmS is feedback regulated by GlcN-6-P in a pathway that involves the small RNA GlmZ. Expression of glmS is activated by the unprocessed form of GlmZ, which accumulates when the intracellular GlcN-6-P concentration decreases. GlmZ stabilizes a glmS transcript that derives from processing. Overexpression of a second sRNA, GlmY, also activates glmS expression in an unknown way. Furthermore, mutations in two genes, yhbJ and pcnB, cause accumulation of full-length GlmZ and thereby activate glmS expression. The function of yhbJ is unknown and pcnB encodes poly(A) polymerase PAP-I known to polyadenylate and destabilize RNAs. Here we show that GlmY acts indirectly in a way that depends on GlmZ. When the intracellular GlcN-6-P concentration decreases, GlmY accumulates and causes in turn accumulation of full-length GlmZ, which finally activates glmS expression. In glmZ mutants, GlmY has no effect on glmS, whereas artificially expressed GlmZ can activate glmS expression also in the absence of GlmY. Furthermore, we show that PAP-I acts at the top of this regulatory pathway by polyadenylating and destabilizing GlmY. In pcnB mutants, GlmY accumulates and induces glmS expression by stabilizing full-length GlmZ. Hence, the data reveal a regulatory cascade composed of two sRNAs, which responds to GlcN-6-P and is controlled by polyadenylation.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Poliadenilação , RNA não Traduzido/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/metabolismo , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Glucose-6-Fosfato/análogos & derivados , Glucose-6-Fosfato/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/biossíntese , Mutação , Polinucleotídeo Adenililtransferase/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA
16.
Biochim Biophys Acta Gene Regul Mech ; 1863(2): 194489, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31935527

RESUMO

Bacteria exhibit an amazing diversity of mechanisms controlling gene expression to both maintain essential functions and modulate accessory functions in response to environmental cues. Over the years, it has become clear that bacterial regulation of gene expression is still far from fully understood. This review focuses on antisense RNAs (asRNAs), a class of RNA regulators defined by their location in cis and their perfect complementarity with their targets, as opposed to small RNAs (sRNAs) which act in trans with only short regions of complementarity. For a long time, only few functional asRNAs in bacteria were known and were almost exclusively found on mobile genetic elements (MGEs), thus, their importance among the other regulators was underestimated. However, the extensive application of transcriptomic approaches has revealed the ubiquity of asRNAs in bacteria. This review aims to present the landscape of studied asRNAs in bacteria by comparing 67 characterized asRNAs from both Gram-positive and Gram-negative bacteria. First we describe the inherent ambiguity in the existence of asRNAs in bacteria, second, we highlight their diversity and their involvement in all aspects of bacterial life. Finally we compare their location and potential mode of action toward their target between Gram-negative and Gram-positive bacteria and present tendencies and exceptions that could lead to a better understanding of asRNA functions.


Assuntos
Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , RNA Antissenso/fisiologia , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Sequências Repetitivas Dispersas , RNA Antissenso/metabolismo
17.
Commun Biol ; 3(1): 718, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247281

RESUMO

Toxin-antitoxin (TA) systems are widespread on mobile genetic elements and in bacterial chromosomes. In type I TA, synthesis of the toxin protein is prevented by the transcription of an antitoxin RNA. The first type I TA were recently identified in the human enteropathogen Clostridioides difficile. Here we report the characterization of five additional type I TA within phiCD630-1 (CD0977.1-RCd11, CD0904.1-RCd13 and CD0956.3-RCd14) and phiCD630-2 (CD2889-RCd12 and CD2907.2-RCd15) prophages of C. difficile strain 630. Toxin genes encode 34 to 47 amino acid peptides and their ectopic expression in C. difficile induces growth arrest that is neutralized by antitoxin RNA co-expression. We show that type I TA located within the phiCD630-1 prophage contribute to its stability and heritability. We have made use of a type I TA toxin gene to generate an efficient mutagenesis tool for this bacterium that allowed investigation of the role of these widespread TA in prophage maintenance.


Assuntos
Clostridioides difficile/genética , Sequências Repetitivas Dispersas , Sistemas Toxina-Antitoxina/genética , Regulação Bacteriana da Expressão Gênica , Plasmídeos
18.
Nucleic Acids Res ; 35(8): 2494-502, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17395638

RESUMO

Although usually implicated in the stabilization of mRNAs in eukaryotes, polyadenylation was initially shown to destabilize RNA in bacteria. All the data are consistent with polyadenylation being part of a quality control process targeting folded RNA fragments and non-functional RNA molecules to degradation. We report here an example in Escherichia coli, where polyadenylation directly controls the level of expression of a gene by modulating the stability of a functional transcript. Inactivation of poly(A)polymerase I causes overexpression of glucosamine-6-phosphate synthase (GlmS) and both the accumulation and stabilization of the glmS transcript. Moreover, we show that the glmS mRNA results from the processing of the glmU-glmS cotranscript by RNase E. Interestingly, the glmU-glmS cotranscript and the mRNA fragment encoding GlmU only slightly accumulated in the absence of poly(A)polymerase, suggesting that the endonucleolytically generated glmS mRNA harbouring a 5' monophosphate and a 3' stable hairpin is highly susceptible to poly(A)-dependent degradation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Complexos Multienzimáticos/metabolismo , Poliadenilação , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Deleção de Genes , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Complexos Multienzimáticos/genética , Polinucleotídeo Adenililtransferase/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Regulação para Cima
19.
Biochimie ; 164: 3-16, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30995539

RESUMO

Prokaryotes encounter constant and often brutal modifications to their environment. In order to survive, they need to maintain fitness, which includes adapting their protein expression patterns. Many factors control gene expression but this review focuses on just one, namely antisense RNAs (asRNAs), a class of non-coding RNAs (ncRNAs) characterized by their location in cis and their perfect complementarity with their targets. asRNAs were considered for a long time to be trivial and only to be found on mobile genetic elements. However, recent advances in methodology have revealed that their abundance and potential activities have been underestimated. This review aims to illustrate the role of asRNA in various physiologically crucial functions in both archaea and bacteria, which can be regrouped in three categories: cell maintenance, horizontal gene transfer and virulence. A literature survey of asRNAs demonstrates the difficulties to characterize and assign a role to asRNAs. With the aim of facilitating this task, we describe recent technological advances that could be of interest to identify new asRNAs and to discover their function.


Assuntos
Archaea , Bactérias , Fenômenos Fisiológicos Bacterianos/genética , Transferência Genética Horizontal/genética , RNA Antissenso , Virulência/genética , Archaea/genética , Archaea/patogenicidade , Archaea/fisiologia , Bactérias/genética , Bactérias/patogenicidade , Regulação da Expressão Gênica em Archaea , Regulação Bacteriana da Expressão Gênica , RNA Antissenso/genética , RNA Antissenso/fisiologia , RNA Arqueal/genética , RNA Arqueal/fisiologia , RNA Bacteriano/genética , RNA Bacteriano/fisiologia
20.
Sci Rep ; 9(1): 14054, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575967

RESUMO

Hfq is a RNA-binding protein that plays a pivotal role in the control of gene expression in bacteria by stabilizing sRNAs and facilitating their pairing with multiple target mRNAs. It has already been shown that Hfq, directly or indirectly, interacts with many proteins: RNase E, Rho, poly(A)polymerase, RNA polymerase… In order to detect more Hfq-related protein-protein interactions we have used two approaches, TAP-tag combined with RNase A treatment to access the role of RNA in these complexes, and protein-protein crosslinking, which freezes protein-protein complexes formed in vivo. In addition, we have performed microscale thermophoresis to evaluate the role of RNA in some of the complexes detected and used far-western blotting to confirm some protein-protein interactions. Taken together, the results show unambiguously a direct interaction between Hfq and EF-Tu. However a very large number of the interactions of proteins with Hfq in E. coli involve RNAs. These RNAs together with the interacting protein, may play an active role in the formation of Hfq-containing complexes with previously unforeseen implications for the riboregulatory functions of Hfq.


Assuntos
Proteínas de Escherichia coli/química , Fator Proteico 1 do Hospedeiro/química , Complexos Multiproteicos/química , Ribonucleoproteínas/química , Western Blotting , Escherichia coli/metabolismo , Ribonuclease Pancreático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA