Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 301: 113791, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592670

RESUMO

The conversion of low-value plastic waste into high-value products such as carbon nanomaterial is of recent interest. In the current study, the non-condensable pyrolysis gases, produced from Polypropylene Copolymer (PPC) feedstock, was converted into bamboo-type carbon nanotubes (BCNTs) through catalytic chemical vapour deposition using biochar. Experiments were conducted in a three-zone furnace fixed bed reactor, where PPC was pyrolysed in the second zone and carbon nanotubes (CNTs) growth was eventuated in the third zone. The effects of different growth temperatures (500, 700, 900 °C) and biochar particle sizes (nanoparticle as well as 0-100 and 100-300 µm) were investigated to optimise the production of hydrogen and the yield of carbon nanotubes on the biochar surface. Biochar samples used in the synthesis of CNTs were obtained from the pyrolysis of saw dust at 700 °C in a muffle furnace. Analyses performed by using Scanning electron microscopy, Transmission electron microscopy, X-ray diffraction, and Raman spectroscopy techniques suggested that the best crystalline structure of CNTs were obtained at 900 °C with nano-sized biochar as a catalyst. The strong gas-solid contact and void fraction of nano-sized particles enhances the diffusion-precipitation mechanism, leading to the growth of CNTs. The nano-sized biochar increased hydrogen production at 900 °C and reduced the polycyclic aromatic hydrocarbons content in oil to only 1%, which is advantageous for further utilisation. Therefore, the production of high-value CNTs from waste plastic using low-cost biochar catalyst can be a sustainable approach in the management of waste plastic while participating in the circular economy.


Assuntos
Nanotubos de Carbono , Pirólise , Carvão Vegetal , Gases , Polímeros , Polipropilenos
2.
Heliyon ; 9(11): e21100, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920507

RESUMO

The process of breaking down chicken manure through anaerobic digestion is an effective waste management technology. However, chicken manure can be a challenging feedstock, causing ammonia stress and digester instability. This study examined the impacts of adding wood biochar and acid-alkali-treated wood biochar to anaerobically digest chicken manure under conditions of ammonia inhibition. The results highlighted that only the addition of 5 % acid-alkali-treated wood biochar by volume can achieve cumulative methane production close to the typical methane potential range of chicken manure. The treated wood biochar also exhibited highest total ammonia nitrogen removal compared to the Control treatment. Scanning Electron Microscope revealed growing interactions between biochar and methanogens over time. Real-time polymerase chain reaction showed that treated wood biochar produced the highest number of bacterial biomass. In addition, 16S amplicon-based sequencing identified a more robust archaeal community from treated biochar addition. Overall, the acid-alkali treatment of biochar represents an effective method of modifying biochar to improve its performance in anaerobic digestion.

3.
Waste Manag ; 159: 146-153, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764239

RESUMO

Anaerobic digestion is a popular unit operation in wastewater treatment to degrade organic contaminants, thereby generating biogas (methane-rich gas stream). Catalytic decomposition of the biogas could be a promising upcycling approach to produce renewable hydrogen and sequester carbon in the form of carbon nanomaterials (CNMs). Biosolids are solid waste generated during the wastewater treatment process, which can be valorised to biochar via pyrolysis. This work demonstrates the use of biosolids-derived biochar compared with ilmenite as catalysts for biogas decomposition to hydrogen and CNMs. Depending on the reaction time, biosolids-derived biochar achieved a CH4 and CO2 conversion of 50-70 % and 70-90 % at 900 °C with a weight hourly space velocity (WHSV) of 1.2 Lg-1h-1. The high conversion rate was attributed to the formation of amorphous carbon on the biochar surface, where the carbon deposits acted as catalysts and substrates for the further decomposition of CH4 and CO2. Morphological characterisation of biochar after biogas decomposition revealed the formation of high-quality carbon nanospheres (200-500 nm) and carbon nanofibres (10-100 nm) on its surface. XRD pattern and Raman spectroscopy also signified the presence of graphitic structures with ID/IG ratio of 1.19, a reduction from 1.33 in the pristine biochar. Finally, the produced CNM-loaded biochar was tested for PFAS adsorption from contaminated wastewater. A removal efficiency of 79 % was observed for CNM-coated biochar which was 10-60 % higher than using biochar and ilmenite alone. This work demonstrated an integrated approach for upcycling waste streams generated in wastewater treatment facilities.


Assuntos
Biocombustíveis , Fluorocarbonos , Biossólidos , Dióxido de Carbono , Adsorção , Carvão Vegetal/química , Águas Residuárias , Carbono/química , Hidrogênio
4.
Sci Total Environ ; 849: 157753, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35931161

RESUMO

Soil pollution from petroleum hydrocarbon is a global environmental problem that could contribute to the non-actualisation of the United Nations Sustainable Development Goals. Several techniques have been used to remediate petroleum hydrocarbon-contaminated soils; however, there are technical and economical limitations to existing methods. As such, the development of new approaches and the improvement of existing techniques are imperative. Biochar, a low-cost carbonaceous product of the thermal decomposition of waste biomass has gained relevance in soil remediation. Biochar has been applied to remediate hydrocarbon-contaminated soils, with positive and negative results reported. Consequently, attempts have been made to improve the performance of biochar in the hydrocarbon-based remediation process through the co-application of biochar with other bioremediation techniques as well as modifying biochar properties before use. Despite the progress made in this domain, there is a lack of a detailed single review consolidating the critical findings, new developments, and challenges in biochar-based remediation of petroleum hydrocarbon-contaminated soil. This review assessed the potential of biochar co-application with other well-known bioremediation techniques such as bioaugmentation, phytoremediation, and biostimulation. Additionally, the benefits of modification in enhancing biochar suitability for bioremediation were examined. It was concluded that biochar co-application generally resulted in higher hydrocarbon removal than sole biochar treatment, with up to a 4-fold higher removal observed in some cases. However, most of the biochar co-applied treatments did not result in hydrocarbon removal that was greater than the additive effects of individual treatment. Overall, compared to their complementary treatments, biochar co-application with bioaugmentation was more beneficial in hydrocarbon removal than biochar co-application with either phytoremediation or biostimulation. Future studies should integrate the ecotoxicological and cost implications of biochar co-application for a viable remediation process. Lastly, improving the synergistic interactions of co-treatment on hydrocarbon removal is critical to capturing the full potential of biochar-based remediation.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
5.
Chemosphere ; 279: 130557, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33894517

RESUMO

There are several recent reviews published in the literature on hydrothermal carbonization, liquefaction and supercritical water gasification of lignocellulosic biomass and algae. The potential of hydrochar, bio-oil or synthesis gas production and applications have also been reviewed individually. The comprehensive review on the hydrothermal treatment of wet wastes (such as municipal solid waste, food waste, sewage sludge, algae) covering carbonization, liquefaction and supercritical water gasification, however, is missing in the literature which formed the basis of the current review paper. The current paper critically reviews the literature around the full spectrum of hydrothermal treatment for wet wastes and establishes a good comparison of the different hydrothermal treatment options for managing wet waste streams. Also, the role of catalysts as well as synthesis of catalysts using hydrothermal treatment of biomass has been critically reviewed. For the first time, efforts have also been made to summarize findings on modelling works as well as techno-economic assessments in the area of hydrothermal treatments of wet wastes. The study concludes with key findings, knowledge gaps and future recommendations to improve the productivity of hydrothermal treatment of wet wastes, helping improve the commercial viability and environmental sustainability.


Assuntos
Eliminação de Resíduos , Biomassa , Carbono , Alimentos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA