Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(1): 197-211, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36475639

RESUMO

Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradients with dual slopes (steep and shallow), adjacent to uniform stiffness (soft and stiff) regions. While fibroblasts rely on nonmuscle myosin II (NMII) activity and the LIM-domain protein Zyxin, ROCK and the Arp2/3 complex are surprisingly dispensable for durotaxis on either stiffness gradient. Additionally, loss of either actin-elongator Formin-like 3 (FMNL3) or actin-bundler fascin has little impact on durotactic response on stiffness gradients. However, lack of Arp2/3 activity results in a filopodia-based durotactic migration that is equally as efficient as that of lamellipodia-based durotactic migration. Importantly, we uncover essential and specific roles for FMNL3 and fascin in the formation and asymmetric distribution of filopodia during filopodia-based durotaxis response to the stiffness gradients. Together, our tunable all-in-one hydrogel system serves to identify both conserved as well as distinct molecular mechanisms that underlie mechano-responses of cells experiencing altered slopes of stiffness gradients.


Assuntos
Actomiosina , Hidrogéis , Hidrogéis/química , Movimento Celular/fisiologia , Actinas , Fibroblastos
2.
J Leukoc Biol ; 101(1): 321-328, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27531929

RESUMO

Although eosinophils as a group are readily identified by their unique morphology and staining properties, flow cytometry provides an important means for identification of subgroups based on differential expression of distinct surface Ags. Here, we characterize an eosinophil subpopulation defined by high levels of expression of the neutrophil Ag Gr1 (CD45+CD11c-SiglecF+Gr1hi). SiglecF+Gr1hi eosinophils, distinct from the canonical SiglecF+Gr1- eosinophil population, were detected in allergen-challenged wild-type and granule protein-deficient (EPX-/- and MBP-1-/-) mice, but not in the eosinophil-deficient ΔdblGATA strain. In contrast to Gr1+ neutrophils, which express both cross-reacting Ags Ly6C and Ly6G, SiglecF+Gr1hi eosinophils from allergen-challenged lung tissue are uniquely Ly6G+ Although indistinguishable from the more-numerous SiglecF+Gr1- eosinophils under light microscopy, FACS-isolated populations revealed prominent differences in cytokine contents. The lymphocyte-targeting cytokines CXCL13 and IL-27 were identified only in the SiglecF+Gr1hi eosinophil population (at 3.9 and 4.8 pg/106 cells, respectively), as was the prominent proinflammatory mediator IL-13 (72 pg/106 cells). Interestingly, bone marrow-derived (SiglecF+), cultured eosinophils include a more substantial Gr1+ subpopulation (∼50%); Gr1+ bmEos includes primarily a single Ly6C+ and a smaller, double-positive (Ly6C+Ly6G+) population. Taken together, our findings characterize a distinct SiglecF+Gr1hi eosinophil subset in lungs of allergen-challenged, wild-type and granule protein-deficient mice. SiglecF+Gr1hi eosinophils from wild-type mice maintain a distinct subset of cytokines, including those active on B and T lymphocytes. These cytokines may facilitate eosinophil-mediated immunomodulatory responses in the allergen-challenged lung as well as in other distinct microenvironments.


Assuntos
Alérgenos/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos/metabolismo , Eosinófilos/imunologia , Pulmão/patologia , Animais , Antígenos Ly/metabolismo , Células da Medula Óssea/metabolismo , Quimiocinas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteína Básica Maior de Eosinófilos/deficiência , Proteína Básica Maior de Eosinófilos/metabolismo , Peroxidase de Eosinófilo/deficiência , Peroxidase de Eosinófilo/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA