Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(41)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38941995

RESUMO

The Berezinskii-Kosterlitz-Thouless (BKT) transition in magnetic systems is an intriguing phenomenon, and estimating the BKT transition temperature is a long-standing problem. In this work, we explore anisotropic classical Heisenberg XY and XXZ models with ferromagnetic exchange on a square lattice and antiferromagnetic exchange on a triangular lattice using an unsupervised machine learning approach called principal component analysis (PCA). The earlier PCA studies of the BKT transition temperature (TBKT) using the vorticities as input fail to give any conclusive results, whereas, in this work, we show that the proper analysis of the first principal component-temperature curve can estimateTBKTwhich is consistent with the existing literature. This analysis works well for the anisotropic classical Heisenberg with a ferromagnetic exchange on a square lattice and for frustrated antiferromagnetic exchange on a triangular lattice. The classical anisotropic Heisenberg antiferromagnetic model on the triangular lattice has two close transitions: theTBKTand Ising-like phase transition for chirality atTc, and it is difficult to separate these transition points. It is also noted that using the PCA method and manipulation of their first principal component not only makes the separation of transition points possible but also determines transition temperature.

2.
J Phys Condens Matter ; 35(11)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36599166

RESUMO

Frustration-driven quantum fluctuation leads to many exotic phases in the ground state (GS) and the study of these quantum phase transitions is one of the most challenging areas of research in condensed matter physics. We study a frustrated HeisenbergJ1-J2model of spin-1/2 chain with nearest exchange interactionJ1and next nearest exchange interactionJ2using the principal component analysis (PCA) which is an unsupervised machine learning technique. In this method most probable spin configurations (MPSCs) of GS and first excited state (FES) for differentJ2/J1are used as the input in PCA to construct the covariance matrix. The 'quantified principal component'p1(J2/J1)of the largest eigenvalue of the covariance matrix is calculated and it is shown that the nature and variation ofp1(J2/J1)can accurately predict the phase transitions and degeneracies in the GS. Thep1(J2/J1)calculated from the MPSC of GS only exhibits the signature of degeneracies in the GS, whereas,p1(J2/J1)calculated from the MPSC of FES captures the gapless spin liquid (GSL)-dimer phase transition as well as all the degeneracies of the model system. We show that the jump inp1(J2/J1)of FES atJ2/J1≈0.241, indicates the GSL-dimer phase transition, whereas its kinks give the signature of the GS degeneracies. The scatter plot of the first two principal components of FES shows distinct band formation for different phases. The MPSCs are obtained by using an iterative variational method (IVM) which gives the approximate eigenvalues and eigenvectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA