RESUMO
With potential to improve patient outcomes, quality of care and cost-effectiveness, clinical research activity in community hospitals has recently begun to increase. Recognizing that establishing or strengthening a clinical research program in this setting is an important, complex and challenging undertaking, this article introduces many of the resources, best practices and success stories that community hospitals can draw upon to develop and incentivize clinical researchers, operationalize the clinical research enterprise and make clinical research impactful.
Assuntos
Pesquisa Biomédica , Administração Hospitalar/métodos , Hospitais Comunitários/organização & administração , Canadá , Humanos , Cultura OrganizacionalRESUMO
BACKGROUND: Due to the indolent nature of prostate cancer, new prognostic measures are needed to identify patients with life threatening disease. SAM pointed domain-containing Ets transcription factor (SPDEF) has been associated with good prognosis and demonstrates an intimate relationship with the androgen receptor (AR), however its role in prostate cancer progression remains unclear. METHODS: A tissue microarray constructed from cores of 713 consecutive radical prostatectomy specimens were immunohistochemically stained for SPDEF and correlated with progression free and metastatic free survival. In vitro studies assessed growth rate, migration, and sensitivity to bicalutamide to explore mechanisms behind the tissue microarray observations. RESULTS: Patients with high SPDEF demonstrate longer metastases free survival after receiving the standard of care (HR = 9.80, P = 0.006). SPDEF expression corresponded with bicalutamide growth inhibition and apoptosis induction in all cell lines studied. In addition, a feedforward loop of AR-SPEF expression regulation is observed. CONCLUSIONS: SPDEF may be clinically useful to identify patients who will have extended benefits from androgen deprivation therapy. In vitro observations suggest SPDEF mediates initial sensitivity to androgen deprivation therapy through both AR regulation and downstream events.
Assuntos
Antagonistas de Androgênios/uso terapêutico , Anilidas/uso terapêutico , Nitrilas/uso terapêutico , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Compostos de Tosil/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Intervalo Livre de Doença , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Prostatectomia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Receptores Androgênicos/metabolismo , Resultado do TratamentoRESUMO
The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.
Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/metabolismo , Desenvolvimento de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Benzamidas/farmacologia , Linhagem Celular , Simulação por Computador , Coronavirus/química , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Interações Hospedeiro-Patógeno , Humanos , Imidazóis/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Triazinas/farmacologia , Tratamento Farmacológico da COVID-19RESUMO
BACKGROUND: 5,10-Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism. Polymorphisms at the C677T and A1298C loci are associated with reduced activity; consequently more folate substrates are shunted toward thymidylate and DNA synthesis. Several studies have reported a reduced risk of developing ALL in children with MTHFR polymorphisms. The objective of this study was to determine the association between MTHFR polymorphisms and ALL in Filipino children. PROCEDURE: We conducted a case control study in children diagnosed with ALL at the Philippine General Hospital from 1/2001 through 12/2005. Bone marrow aspirate slides were reviewed by two expert hematologists to verify the morphologic diagnosis of ALL. DNA was isolated from the slides and MTHFR polymorphisms, C677T and A1298C, were determined using Taqman real-time PCR. Cord blood of healthy Filipino newborns served as control. RESULTS: There were a total of 191 ALL and 394 controls genotyped. The distribution of C677T polymorphisms was similar in the two groups (P = 1.0). However, for A1298C, there was significantly more AC and CC genotypes in the ALL compared to controls (P = 0.02; OR 1.57; CI: 1.08-2.28). The 1298C allele frequency for the control group was 36.8% and 677T allele frequency was 9.9%. CONCLUSION: A1298C polymorphisms is associated with an increased risk for ALL in Filipino children. This may be due to a difference in leukemia biology or to a high prevalence of folate deficiency in Filipinos. Our study reiterates the gene and environment interaction in leukemogenesis.
Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Masculino , Análise Multivariada , Reação em Cadeia da Polimerase , Fatores de RiscoRESUMO
Purpose: Cancer-initiating cells (C-IC) have been described in multiple cancer types, including colorectal cancer. C-ICs are defined by their capacity to self-renew, thereby driving tumor growth. C-ICs were initially thought to be static entities; however, recent studies have determined these cells to be dynamic and influenced by microenvironmental cues such as hypoxia. If hypoxia drives the formation of C-ICs, then therapeutic targeting of hypoxia could represent a novel means to target C-ICs.Experimental Design: Patient-derived colorectal cancer xenografts were treated with evofosfamide, a hypoxia-activated prodrug (HAP), in combination with 5-fluorouracil (5-FU) or chemoradiotherapy (5-FU and radiation; CRT). Treatment groups included both concurrent and sequential dosing regimens. Effects on the colorectal cancer-initiating cell (CC-IC) fraction were assessed by serial passage in vivo limiting dilution assays. FAZA-PET imaging was utilized as a noninvasive method to assess intratumoral hypoxia.Results: Hypoxia was sufficient to drive the formation of CC-ICs and colorectal cancer cells surviving conventional therapy were more hypoxic and C-IC-like. Using a novel approach to combination therapy, we show that sequential treatment with 5-FU or CRT followed by evofosfamide not only inhibits tumor growth of xenografts compared with 5-FU or CRT alone, but also significantly decreases the CC-IC fraction. Furthermore, noninvasive FAZA-PET hypoxia imaging was predictive of a tumor's response to evofosfamide.Conclusions: Our data demonstrate a novel means to target the CC-IC fraction by adding a HAP sequentially after conventional adjuvant therapy, as well as the use of FAZA-PET as a biomarker for hypoxia to identify tumors that will benefit most from this approach. Clin Cancer Res; 24(9); 2116-27. ©2018 AACR.
Assuntos
Neoplasias Colorretais/metabolismo , Hipóxia/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Nitroimidazóis/administração & dosagem , Mostardas de Fosforamida/administração & dosagem , Pró-Fármacos/administração & dosagem , Animais , Biomarcadores , Caspases/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiorradioterapia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Camundongos , Fenótipo , Tomografia por Emissão de Pósitrons , Padrão de Cuidado , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Traditional multiplexed gene expression methods require well preserved, intact RNA. Such specimens are difficult to acquire in clinical practice where formalin fixation is the standard procedure for processing tissue. Even when special handling methods are used to obtain frozen tissue, there may be RNA degradation; for example autopsy samples where degradation occurs both pre-mortem and during the interval between death and cryopreservation. Although specimens with partially degraded RNA can be analyzed by qRT-PCR, these analyses can only be done individually or at low levels of multiplexing and are laborious and expensive to run for large numbers of RNA targets. METHODS: We evaluated the ability of the cDNA-mediated Annealing, Selection, extension, and Ligation (DASL) assay to provide highly multiplexed analyses of cryopreserved and formalin fixed, paraffin embedded (FFPE) tissues obtained at autopsy. Each assay provides data on 1536 targets, and can be performed on specimens with RNA fragments as small as 60 bp. RESULTS: The DASL performed accurately and consistently with cryopreserved RNA obtained at autopsy as well as with RNA extracted from formalin-fixed paraffin embedded tissue that had a cryopreserved mirror image specimen with high quality RNA. In FFPE tissue where the cryopreserved mirror image specimen was of low quality the assay performed reproducibly on some but not all specimens. CONCLUSION: The DASL assay provides reproducible results from cryopreserved specimens and many FFPE specimens obtained at autopsy. Gene expression analyses of these specimens may be especially valuable for the study of non-cancer endpoints, where surgical specimens are rarely available.
RESUMO
YM155, a novel survivin suppressant, shows potent antitumor activity against various human cancers and is currently in phase II clinical trials. In this study, we investigated whether YM155 selectively inhibits survivin transcription. We hypothesize that inhibition of survivin transcription plays a role in YM155-mediated survivin inhibition. We found that YM155 inhibited survivin promoter activity, while it showed minimal inhibitory effect on four control gene promoters in transfection and luciferase activity assay experiments, indicating its selectivity. Transfection of various survivin promoter-luciferase constructs followed by luciferase assays revealed that the survivin core promoter (269 bp) plays a major role in YM155-mediated inhibitory effects. However, flow cytometry analysis indicated that inhibition of survivin promoter activity by YM155 is cell cycle-independent without G1 cell arrests. Electrophoretic mobility shift assays (EMSA) identified that YM155 abrogates nuclear proteins binding to the region of -149 to -71, in which Sp1 is a major candidate, and that YM155 treatment induces Sp1 re-subcellular localization without inhibiting its expression. Forced expression of Sp1 neutralized YM155-mediated downregulation of survivin promoter activity. Consistently, mutation of the identified Sp1 sites in the oligonucleotide probe diminished DNA-protein interactions in EMSA experiments, and mutation of the Sp1 sites in the survivin promoter-luciferase construct diminished survivin promoter activity. These findings indicate that YM155 inhibition of survivin expression is at least in part through its inhibition of survivin transcription by disruption of Sp1 interaction with the region of -149 to -71 in the survivin core promoter.