Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 18(1): 225, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29486723

RESUMO

BACKGROUND: Programmed Death Ligand 1 (PD-L1) is a co-stimulatory and immune checkpoint protein. PD-L1 expression in non-small cell lung cancers (NSCLC) is a hallmark of adaptive resistance and its expression is often used to predict the outcome of Programmed Death 1 (PD-1) and PD-L1 immunotherapy treatments. However, clinical benefits do not occur in all patients and new approaches are needed to assist in selecting patients for PD-1 or PD-L1 immunotherapies. Here, we hypothesized that patient tumor cell genomics influenced cell signaling and expression of PD-L1, chemokines, and immunosuppressive molecules and these profiles could be used to predict patient clinical responses. METHODS: We used a recent dataset from NSCLC patients treated with pembrolizumab. Deleterious gene mutational profiles in patient exomes were identified and annotated into a cancer network to create NSCLC patient-specific predictive computational simulation models. Validation checks were performed on the cancer network, simulation model predictions, and PD-1 match rates between patient-specific predicted and clinical responses. RESULTS: Expression profiles of these 24 chemokines and immunosuppressive molecules were used to identify patients who would or would not respond to PD-1 immunotherapy. PD-L1 expression alone was not sufficient to predict which patients would or would not respond to PD-1 immunotherapy. Adding chemokine and immunosuppressive molecule expression profiles allowed patient models to achieve a greater than 85.0% predictive correlation among predicted and reported patient clinical responses. CONCLUSIONS: Our results suggested that chemokine and immunosuppressive molecule expression profiles can be used to accurately predict clinical responses thus differentiating among patients who would and would not benefit from PD-1 or PD-L1 immunotherapies.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Simulação por Computador , Imunoterapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Quimiocinas/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Biológicos , Mutação , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
2.
BMC Cancer ; 18(1): 413, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649990

RESUMO

It has been highlighted that in the original manuscript [1] Table S3 'An example of the predictive computational modeling process. Specific details on an annexure section of the PD-L1 pathway show the step-by-step reactions, mechanisms, and reaction equations that occur. Such reactions also occurred in all of the other pathways' was omitted and did not appear in the Additional files and that the Additional files were miss-numbered thereafter. This Correction shows the correct and incorrect Additional files. The original article has been updated.

3.
Bioinformatics ; 30(23): 3438-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25123904

RESUMO

UNLABELLED: Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician-scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. AVAILABILITY AND IMPLEMENTATION: Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova.


Assuntos
Bases de Dados de Ácidos Nucleicos , Variação Genética , Algoritmos , Humanos , Internet , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA