Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Malar J ; 23(1): 71, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461239

RESUMO

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Assuntos
Antimaláricos , Artemisininas , Carrubicina/análogos & derivados , Malária Falciparum , Humanos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Tanzânia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/epidemiologia , Biomarcadores , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
2.
Emerg Infect Dis ; 28(3): 608-616, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201739

RESUMO

Histidine-rich protein 2 (HRP2)-based rapid diagnostic tests detect Plasmodium falciparum malaria and are used throughout sub-Saharan Africa. However, deletions in the pfhrp2 and related pfhrp3 (pfhrp2/3) genes threaten use of these tests. Therapeutic efficacy studies (TESs) enroll persons with symptomatic P. falciparum infection. We screened TES samples collected during 2016-2018 in Ethiopia, Kenya, Rwanda, and Madagascar for HRP2/3, pan-Plasmodium lactate dehydrogenase, and pan-Plasmodium aldolase antigen levels and selected samples with low levels of HRP2/3 for pfhrp2/3 genotyping. We observed deletion of pfhrp3 in samples from all countries except Kenya. Single-gene deletions in pfhrp2 were observed in 1.4% (95% CI 0.2%-4.8%) of Ethiopia samples and in 0.6% (95% CI 0.2%-1.6%) of Madagascar samples, and dual pfhrp2/3 deletions were noted in 2.0% (95% CI 0.4%-5.9%) of Ethiopia samples. Although this study was not powered for precise prevalence estimates, evaluating TES samples revealed a low prevalence of pfhrp2/3 deletions in most sites.


Assuntos
Malária Falciparum , Malária , Antígenos de Protozoários/genética , Testes Diagnósticos de Rotina , Etiópia/epidemiologia , Deleção de Genes , Humanos , Quênia/epidemiologia , Madagáscar/epidemiologia , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Ruanda/epidemiologia
3.
Clin Infect Dis ; 72(10): e448-e457, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32785683

RESUMO

BACKGROUND: The Diamond Princess cruise ship was the site of a large outbreak of coronavirus disease 2019 (COVID-19). Of 437 Americans and their travel companions on the ship, 114 (26%) tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We interviewed 229 American passengers and crew after disembarkation following a ship-based quarantine to identify risk factors for infection and characterize transmission onboard the ship. RESULTS: The attack rate for passengers in single-person cabins or without infected cabinmates was 18% (58/329), compared with 63% (27/43) for those sharing a cabin with an asymptomatic infected cabinmate, and 81% (25/31) for those with a symptomatic infected cabinmate. Whole genome sequences from specimens from passengers who shared cabins clustered together. Of 66 SARS-CoV-2-positive American travelers with complete symptom information, 14 (21%) were asymptomatic while on the ship. Among SARS-CoV-2-positive Americans, 10 (9%) required intensive care, of whom 7 were ≥70 years. CONCLUSIONS: Our findings highlight the high risk of SARS-CoV-2 transmission on cruise ships. High rates of SARS-CoV-2 positivity in cabinmates of individuals with asymptomatic infections suggest that triage by symptom status in shared quarters is insufficient to halt transmission. A high rate of intensive care unit admission among older individuals complicates the prospect of future cruise travel during the pandemic, given typical cruise passenger demographics. The magnitude and severe outcomes of this outbreak were major factors contributing to the Centers for Disease Control and Prevention's decision to halt cruise ship travel in US waters in March 2020.


Assuntos
COVID-19 , Navios , Diamante , Surtos de Doenças , Humanos , Quarentena , SARS-CoV-2 , Viagem , Estados Unidos/epidemiologia
4.
Emerg Infect Dis ; 27(7): 1902-1908, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152946

RESUMO

The spread of drug resistance to antimalarial treatments poses a serious public health risk globally. To combat this risk, molecular surveillance of drug resistance is imperative. We report the prevalence of mutations in the Plasmodium falciparum kelch 13 propeller domain associated with partial artemisinin resistance, which we determined by using Sanger sequencing samples from patients enrolled in therapeutic efficacy studies from 9 sub-Saharan countries during 2014-2018. Of the 2,865 samples successfully sequenced before treatment (day of enrollment) and on the day of treatment failure, 29 (1.0%) samples contained 11 unique nonsynonymous mutations and 83 (2.9%) samples contained 27 unique synonymous mutations. Two samples from Kenya contained the S522C mutation, which has been associated with delayed parasite clearance; however, no samples contained validated or candidate artemisinin-resistance mutations.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/uso terapêutico , Resistência a Medicamentos , Humanos , Quênia , Malária Falciparum/tratamento farmacológico , Mutação , Plasmodium falciparum , Proteínas de Protozoários/genética
5.
Malar J ; 20(1): 72, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546703

RESUMO

BACKGROUND: In 2004, in response to high levels of treatment failure associated with sulfadoxine-pyrimethamine (SP) resistance, Benin changed its first-line malaria treatment from SP to artemisinin-based combination therapy for treatment of uncomplicated Plasmodium falciparum malaria. Resistance to SP is conferred by accumulation of single nucleotide polymorphisms (SNPs) in P. falciparum genes involved in folate metabolism, dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps), targeted by pyrimethamine and sulfadoxine, respectively. Because SP is still used for intermittent preventive treatment in pregnant women (IPTp) and seasonal malaria chemoprevention (SMCP) in Benin, the prevalence of Pfdhfr and Pfdhps SNPs in P. falciparum isolates collected in 2017 were investigated. METHODS: This study was carried out in two sites where the transmission of P. falciparum malaria is hyper-endemic: Klouékanmey and Djougou. Blood samples were collected from 178 febrile children 6-59 months old with confirmed uncomplicated P. falciparum malaria and were genotyped for SNPs associated with SP resistance. RESULTS: The Pfdhfr triple mutant IRN (N51I, C59R, and S108N) was the most prevalent (84.6%) haplotype and was commonly found with the Pfdhps single mutant A437G (50.5%) or with the Pfdhps double mutant S436A and A437G (33.7%). The quintuple mutant, Pfdhfr IRN/Pfdhps GE (A437G and K540E), was rarely observed (0.8%). The A581G and A613S mutant alleles were found in 2.6 and 3.9% of isolates, respectively. Six isolates (3.9%) were shown to harbour a mutation at codon I431V, recently identified in West African parasites. CONCLUSIONS: This study showed that Pfdhfr triple IRN mutants are near fixation in this population and that the highly sulfadoxine-resistant Pfdhps alleles are not widespread in Benin. These data support the continued use of SP for chemoprevention in these study sites, which should be complemented by periodic nationwide molecular surveillance to detect emergence of resistant genotypes.


Assuntos
Antimaláricos/farmacologia , Di-Hidropteroato Sintase/genética , Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Sulfadoxina/farmacologia , Alelos , Benin/epidemiologia , Pré-Escolar , Di-Hidropteroato Sintase/metabolismo , Combinação de Medicamentos , Feminino , Humanos , Lactente , Malária Falciparum/epidemiologia , Masculino , Plasmodium falciparum/enzimologia , Prevalência , Pirimetamina/farmacologia
6.
Malar J ; 20(1): 398, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641867

RESUMO

BACKGROUND: Due to the threat of emerging anti-malarial resistance, the World Health Organization recommends incorporating surveillance for molecular markers of anti-malarial resistance into routine therapeutic efficacy studies (TESs). In 2018, a TES of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) was conducted in Mozambique, and the prevalence of polymorphisms in the pfk13, pfcrt, and pfmdr1 genes associated with drug resistance was investigated. METHODS: Children aged 6-59 months were enrolled in four study sites. Blood was collected and dried on filter paper from participants who developed fever within 28 days of initial malaria treatment. All samples were first screened for Plasmodium falciparum using a multiplex real-time PCR assay, and polymorphisms in the pfk13, pfcrt, and pfmdr1 genes were investigated by Sanger sequencing. RESULTS: No pfk13 mutations, associated with artemisinin partial resistance, were observed. The only pfcrt haplotype observed was the wild type CVMNK (codons 72-76), associated with chloroquine sensitivity. Polymorphisms in pfmdr1 were only observed at codon 184, with the mutant 184F in 43/109 (39.4%) of the samples, wild type Y184 in 42/109 (38.5%), and mixed 184F/Y in 24/109 (22.0%). All samples possessed N86 and D1246 at these two codons. CONCLUSION: In 2018, no markers of artemisinin resistance were documented. Molecular surveillance should continue to monitor the prevalence of these markers to inform decisions on malaria treatment in Mozambique.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Polimorfismo Genético/genética , Antimaláricos/farmacologia , Artemisininas/farmacologia , Pré-Escolar , Quimioterapia Combinada , Feminino , Marcadores Genéticos , Humanos , Lactente , Masculino , Moçambique , Plasmodium falciparum/isolamento & purificação
7.
Malar J ; 20(1): 432, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732201

RESUMO

BACKGROUND: Since 2005, artemisinin-based combination therapy (ACT) has been recommended to treat uncomplicated falciparum malaria in Madagascar. Artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) are the first- and second-line treatments, respectively. A therapeutic efficacy study was conducted to assess ACT efficacy and molecular markers of anti-malarial resistance. METHODS: Children aged six months to 14 years with uncomplicated falciparum malaria and a parasitaemia of 1000-100,000 parasites/µl determined by microscopy were enrolled from May-September 2018 in a 28-day in vivo trial using the 2009 World Health Organization protocol for monitoring anti-malarial efficacy. Participants from two communes, Ankazomborona (tropical, northwest) and Matanga (equatorial, southeast), were randomly assigned to ASAQ or AL arms at their respective sites. PCR correction was achieved by genotyping seven neutral microsatellites in paired pre- and post-treatment samples. Genotyping assays for molecular markers of resistance in the pfk13, pfcrt and pfmdr1 genes were conducted. RESULTS: Of 344 patients enrolled, 167/172 (97%) receiving ASAQ and 168/172 (98%) receiving AL completed the study. For ASAQ, the day-28 cumulative PCR-uncorrected efficacy was 100% (95% CI 100-100) and 95% (95% CI 91-100) for Ankazomborona and Matanga, respectively; for AL, it was 99% (95% CI 97-100) in Ankazomborona and 83% (95% CI 76-92) in Matanga. The day-28 cumulative PCR-corrected efficacy for ASAQ was 100% (95% CI 100-100) and 98% (95% CI 95-100) for Ankazomborona and Matanga, respectively; for AL, it was 100% (95% CI 99-100) in Ankazomborona and 95% (95% CI 91-100) in Matanga. Of 83 successfully sequenced samples for pfk13, no mutation associated with artemisinin resistance was observed. A majority of successfully sequenced samples for pfmdr1 carried either the NFD or NYD haplotypes corresponding to codons 86, 184 and 1246. Of 82 successfully sequenced samples for pfcrt, all were wild type at codons 72-76. CONCLUSION: PCR-corrected analysis indicated that ASAQ and AL have therapeutic efficacies above the 90% WHO acceptable cut-off. No genetic evidence of resistance to artemisinin was observed, which is consistent with the clinical outcome data. However, the most common pfmdr1 haplotypes were NYD and NFD, previously associated with tolerance to lumefantrine.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Combinação de Medicamentos , Feminino , Humanos , Lactente , Madagáscar/epidemiologia , Malária Falciparum/epidemiologia , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Polimorfismo Genético , Gravidez , Prevalência , Recidiva , Reinfecção
8.
Malar J ; 20(1): 390, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600544

RESUMO

BACKGROUND: Artemisinin-based combination therapy (ACT) has been the recommended first-line treatment for uncomplicated malaria in Mozambique since 2006, with artemether-lumefantrine (AL) and amodiaquine-artesunate (AS-AQ) as the first choice. To assess efficacy of currently used ACT, an in vivo therapeutic efficacy study was conducted. METHODS: The study was conducted in four sentinel sites: Montepuez, Moatize, Mopeia and Massinga. Patients between 6 and 59 months old with uncomplicated Plasmodium falciparum malaria (2000-200,000 parasites/µl) were enrolled between February and September of 2018, assigned to either an AL or AS-AQ treatment arm, and monitored for 28 days. A Bayesian algorithm was applied to differentiate recrudescence from new infection using genotyping data of seven neutral microsatellites. Uncorrected and PCR-corrected efficacy results at day 28 were calculated. RESULTS: Totals of 368 and 273 patients were enrolled in the AL and AS-AQ arms, respectively. Of these, 9.5% (35/368) and 5.1% (14/273) were lost to follow-up in the AL and AS-AQ arms, respectively. There were 48 and 3 recurrent malaria infections (late clinical and late parasitological failures) in the AL and AS-AQ arms, respectively. The day 28 uncorrected efficacy was 85.6% (95% confidence interval (CI) 81.3-89.2%) for AL and 98.8% (95% CI 96.7-99.8%) for AS-AQ, whereas day 28 PCR-corrected efficacy was 97.9% (95% CI 95.6-99.2%) for AL and 99.6% (95% CI 97.9-100%) for AS-AQ. Molecular testing confirmed that 87.4% (42/48) and 33.3% (1/3) of participants with a recurrent malaria infection in the AL and AS-AQ arms were new infections; an expected finding in a high malaria transmission area. Adverse events were documented in less than 2% of participants for both drugs. CONCLUSION: Both AL and AS-AQ have therapeutic efficacies well above the 90% WHO recommended threshold and remain well-tolerated in Mozambique. Routine monitoring of therapeutic efficacy should continue to ensure the treatments remain efficacious. Trial registration Clinicaltrials.gov: NCT04370977.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Amodiaquina/normas , Antimaláricos/normas , Combinação Arteméter e Lumefantrina/normas , Artemisininas/normas , Pré-Escolar , Combinação de Medicamentos , Humanos , Lactente , Moçambique , Parasitemia/tratamento farmacológico , Segurança , Resultado do Tratamento
9.
Malar J ; 20(1): 484, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952573

RESUMO

BACKGROUND: In Uganda, artemether-lumefantrine (AL) is first-line therapy and dihydroartemisinin-piperaquine (DP) second-line therapy for the treatment of uncomplicated malaria. This study evaluated the efficacy and safety of AL and DP in the management of uncomplicated falciparum malaria and measured the prevalence of molecular markers of resistance in three sentinel sites in Uganda from 2018 to 2019. METHODS: This was a randomized, open-label, phase IV clinical trial. Children aged 6 months to 10 years with uncomplicated falciparum malaria were randomly assigned to treatment with AL or DP and followed for 28 and 42 days, respectively. Genotyping was used to distinguish recrudescence from new infection, and a Bayesian algorithm was used to assign each treatment failure a posterior probability of recrudescence. For monitoring resistance, Pfk13 and Pfmdr1 genes were Sanger sequenced and plasmepsin-2 copy number was assessed by qPCR. RESULTS: There were no early treatment failures. The uncorrected 28-day cumulative efficacy of AL ranged from 41.2 to 71.2% and the PCR-corrected cumulative 28-day efficacy of AL ranged from 87.2 to 94.4%. The uncorrected 28-day cumulative efficacy of DP ranged from 95.8 to 97.9% and the PCR-corrected cumulative 28-day efficacy of DP ranged from 98.9 to 100%. The uncorrected 42-day efficacy of DP ranged from 73.5 to 87.4% and the PCR-corrected 42-day efficacy of DP ranged from 92.1 to 97.5%. There were no reported serious adverse events associated with any of the regimens. No resistance-associated mutations in the Pfk13 gene were found in the successfully sequenced samples. In the AL arm, the NFD haplotype (N86Y, Y184F, D1246Y) was the predominant Pfmdr1 haplotype, present in 78 of 127 (61%) and 76 of 110 (69%) of the day 0 and day of failure samples, respectively. All the day 0 samples in the DP arm had one copy of the plasmepsin-2 gene. CONCLUSIONS: DP remains highly effective and safe for the treatment of uncomplicated malaria in Uganda. Recurrent infections with AL were common. In Busia and Arua, the 95% confidence interval for PCR-corrected AL efficacy fell below 90%. Further efficacy monitoring for AL, including pharmacokinetic studies, is recommended. Trial registration The trail was also registered with the ISRCTN registry with study Trial No. PACTR201811640750761.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos/genética , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Quinolinas/uso terapêutico , Biomarcadores/sangue , Humanos , Plasmodium falciparum/efeitos dos fármacos , Uganda
10.
Malar J ; 20(1): 235, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034754

RESUMO

BACKGROUND: The current first-line treatments for uncomplicated malaria recommended by the National Malaria Control Programme in Mali are artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ). From 2015 to 2016, an in vivo study was carried out to assess the clinical and parasitological responses to AL and ASAQ in Sélingué, Mali. METHODS: Children between 6 and 59 months of age with uncomplicated Plasmodium falciparum infection and 2000-200,000 asexual parasites/µL of blood were enrolled, randomly assigned to either AL or ASAQ, and followed up for 42 days. Uncorrected and PCR-corrected efficacy results at days 28 and 42. were calculated. Known markers of resistance in the Pfk13, Pfmdr1, and Pfcrt genes were assessed using Sanger sequencing. RESULTS: A total of 449 patients were enrolled: 225 in the AL group and 224 in the ASAQ group. Uncorrected efficacy at day 28 was 83.4% (95% CI 78.5-88.4%) in the AL arm and 93.1% (95% CI 89.7-96.5%) in the ASAQ arm. The per protocol PCR-corrected efficacy at day 28 was 91.0% (86.0-95.9%) in the AL arm and 97.1% (93.6-100%) in the ASAQ arm. ASAQ was significantly (p < 0.05) better than AL for each of the aforementioned efficacy outcomes. No mutations associated with artemisinin resistance were identified in the Pfk13 gene. Overall, for Pfmdr1, the N86 allele and the NFD haplotype were the most common. The NFD haplotype was significantly more prevalent in the post-treatment than in the pre-treatment isolates in the AL arm (p < 0.01) but not in the ASAQ arm. For Pfcrt, the CVIET haplotype was the most common. CONCLUSIONS: The findings indicate that both AL and ASAQ remain effective for the treatment of uncomplicated malaria in Sélingué, Mali.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/prevenção & controle , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Lactente , Masculino , Mali
11.
MMWR Morb Mortal Wkly Rep ; 69(12): 347-352, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32214086

RESUMO

An estimated 30 million passengers are transported on 272 cruise ships worldwide each year* (1). Cruise ships bring diverse populations into proximity for many days, facilitating transmission of respiratory illness (2). SARS-CoV-2, the virus that causes coronavirus disease (COVID-19) was first identified in Wuhan, China, in December 2019 and has since spread worldwide to at least 187 countries and territories. Widespread COVID-19 transmission on cruise ships has been reported as well (3). Passengers on certain cruise ship voyages might be aged ≥65 years, which places them at greater risk for severe consequences of SARS-CoV-2 infection (4). During February-March 2020, COVID-19 outbreaks associated with three cruise ship voyages have caused more than 800 laboratory-confirmed cases among passengers and crew, including 10 deaths. Transmission occurred across multiple voyages of several ships. This report describes public health responses to COVID-19 outbreaks on these ships. COVID-19 on cruise ships poses a risk for rapid spread of disease, causing outbreaks in a vulnerable population, and aggressive efforts are required to contain spread. All persons should defer all cruise travel worldwide during the COVID-19 pandemic.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças/prevenção & controle , Saúde Global/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Prática de Saúde Pública , Navios , Doença Relacionada a Viagens , Adulto , Idoso , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , Fatores de Risco , SARS-CoV-2 , Estados Unidos/epidemiologia
12.
Malar J ; 19(1): 291, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795367

RESUMO

BACKGROUND: Anti-malarial drug resistance remains a major threat to global malaria control efforts. In Africa, Plasmodium falciparum remains susceptible to artemisinin-based combination therapy (ACT), but the emergence of resistant parasites in multiple countries in Southeast Asia and concerns over emergence and/or spread of resistant parasites in Africa warrants continuous monitoring. The World Health Organization recommends that surveillance for molecular markers of resistance be included within therapeutic efficacy studies (TES). The current study assessed molecular markers associated with resistance to Artemether-lumefantrine (AL) and Dihydroartemisinin-piperaquine (DP) from samples collected from children aged 6-59 months enrolled in a TES conducted in Siaya County, western Kenya from 2016 to 2017. METHODS: Three hundred and twenty-three samples collected pre-treatment (day-0) and 110 samples collected at the day of recurrent parasitaemia (up to day 42) were tested for the presence of drug resistance markers in the Pfk13 propeller domain, and the Pfmdr1 and Pfcrt genes by Sanger sequencing. Additionally, the Pfpm2 gene copy number was assessed by real-time polymerase chain reaction. RESULTS: No mutations previously associated with artemisinin resistance were detected in the Pfk13 propeller region. However, other non-synonymous mutations in the Pfk13 propeller region were detected. The most common mutation found on day-0 and at day of recurrence in the Pfmdr1 multidrug resistance marker was at codon 184F. Very few mutations were found in the Pfcrt marker (< 5%). Within the DP arm, all recrudescent cases (8 sample pairs) that were tested for Pfpm2 gene copy number had a single gene copy. None of the associations between observed mutations and treatment outcomes were statistically significant. CONCLUSION: The results indicate absence of Pfk13 mutations associated with parasite resistance to artemisinin in this area and a very high proportion of wild-type parasites for Pfcrt. Although the frequency of Pfmdr1 184F mutations was high in these samples, the association with treatment failure did not reach statistical significance. As the spread of artemisinin-resistant parasites remains a possibility, continued monitoring for molecular markers of ACT resistance is needed to complement clinical data to inform treatment policy in Kenya and other malaria-endemic regions.


Assuntos
Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Malária Falciparum/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/sangue , Biomarcadores/sangue , Pré-Escolar , Genes de Protozoários , Humanos , Lactente , Quênia/epidemiologia , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Parasitemia/tratamento farmacológico , Plasmodium falciparum/genética , Prevalência
13.
J Infect Dis ; 219(3): 437-447, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30202972

RESUMO

Background: Detection of Plasmodium antigens provides evidence of malaria infection status and is the basis for most malaria diagnosis. Methods: We developed a sensitive bead-based multiplex assay for laboratory use, which simultaneously detects pan-Plasmodium aldolase (pAldo), pan-Plasmodium lactate dehydrogenase (pLDH), and P. falciparum histidine-rich protein 2 (PfHRP2) antigens. The assay was validated against purified recombinant antigens, monospecies malaria infections, and noninfected blood samples. To test against samples collected in an endemic setting, Angolan outpatient samples (n = 1267) were assayed. Results: Of 466 Angolan samples positive for at least 1 antigen, the most common antigen profiles were PfHRP2+/pAldo+/pLDH+ (167, 36%), PfHRP2+/pAldo-/pLDH- (163, 35%), and PfHRP2+/pAldo+/pLDH- (129, 28%). Antigen profile was predictive of polymerase chain reaction (PCR) positivity and parasite density. Eight Angolan samples (1.7%) had no or very low PfHRP2 but were positive for 1 or both of the other antigens. PCR analysis confirmed 3 (0.6%) were P. ovale infections and 2 (0.4%) represented P. falciparum parasites lacking Pfhrp2 and/or Pfhrp3. Conclusions: These are the first reports of Pfhrp2/3 deletion mutants in Angola. High-throughput multiplex antigen detection can inexpensively screen for low-density P. falciparum, non-falciparum, and Pfhrp2/3-deleted parasites to provide population-level antigen estimates and identify specimens requiring further molecular characterization.


Assuntos
Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Testes Imunológicos , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Angola , Antígenos de Protozoários/sangue , Criança , Pré-Escolar , Frutose-Bifosfato Aldolase/imunologia , Deleção de Genes , Humanos , Lactente , L-Lactato Desidrogenase/imunologia , Malária Falciparum/diagnóstico , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Proteínas de Protozoários/sangue , Proteínas Recombinantes , Adulto Jovem
14.
J Clin Microbiol ; 57(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30626660

RESUMO

The density of malaria parasites is a key determinant of whether an infected individual develops fever. While the pyrogenic threshold for malaria parasite density has been well studied, there are no analogous data on the antigen levels associated with fever during infection. Samples from 797 afebrile and 457 febrile outpatients from two provinces in Angola with known concentrations of histidine-rich protein 2 (HRP2), aldolase, and lactate dehydrogenase (LDH) antigens were analyzed by Bayesian latent class modeling to attribute malarial etiology to the fevers and to estimate the sensitivity and specificity of different antigen thresholds for detection of malaria fevers. Among patients with aldolase or LDH levels detectable with a bead-based assay, the concentrations of these two antigens did not differ between afebrile and febrile patients. In contrast, the concentrations of HRP2 were substantially higher in febrile HRP2-positive patients than in afebrile HRP2-positive patients. When HRP2 concentrations were considered, the malaria-attributable fractions of fever cases were 0.092 in Huambo Province and 0.39 in Uíge Province. Diagnostic tests detecting HRP2 with limits of detection (LODs) in the range of 3,000 to 10,000 pg/µl would provide ideal sensitivity and specificity for determination of malarial etiology among febrile persons.


Assuntos
Antígenos de Protozoários/sangue , Febre/sangue , Febre/etiologia , Malária/sangue , Malária/complicações , Plasmodium/imunologia , Angola/epidemiologia , Teorema de Bayes , Testes Diagnósticos de Rotina , Febre/epidemiologia , Humanos , Limite de Detecção , Malária/epidemiologia , Pacientes Ambulatoriais , Plasmodium/classificação , Sensibilidade e Especificidade
15.
Malar J ; 18(1): 47, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30791915

RESUMO

BACKGROUND: Community health workers (CHWs) provide preventive care and integrated community case management (iCCM) to people with low healthcare access worldwide. CHW programmes have helped reduce mortality in myriad countries, but little data on malaria supply chain management has been shared. This project evaluated the current composition, use, and delivery of malaria iCCM kit commodities in Mozambique-rapid diagnostic tests (RDTs) and artemether-lumefantrine (AL) treatments-to better tailor existing resources to the needs of CHWs in diverse practice settings. METHODS: Health facilities in Maputo (low malaria burden), Inhambane (moderate), and Nampula (high) Provinces were selected using probability proportionate to the number of CHWs at each facility. All CHWs and their supervisors at selected facilities were interviewed using a structured questionnaire to document experiences with kit commodities. Data were analysed to assess CHW commodity stock levels by province and season. RESULTS: In total, 216 CHWs and 56 supervisors were interviewed at 56 health facilities. CHWs reported receiving an average of 6.7 kits in the last year, although they are intended to receive kits monthly. One-tenth of CHWs reported receiving kits with missing RDTs, and 28% reported lacking some AL treatments. Commodity use was highest in the rainy season. Stockouts were reported by CHWs in all provinces, more commonly in the rainy season. Facility-level stockouts of RDTs or some AL formulation in the past year were reported by 66% of supervisors. Use of CHW kit materials by health facilities was reported by 43% of supervisors; this was most common at facilities experiencing stockouts. CONCLUSIONS: Variations in geographic and seasonal malaria commodity needs should be considered in CHW kit distribution planning in Mozambique. Improvements in provision of complete, monthly CHW kits are needed in parallel with improvements in the broader commodity system strengthening. The findings of this evaluation can help other CHW programmes determine best practices for management of iCCM supply chains.


Assuntos
Agentes Comunitários de Saúde , Gerenciamento Clínico , Malária/diagnóstico , Malária/tratamento farmacológico , Antimaláricos/administração & dosagem , Combinação Arteméter e Lumefantrina/administração & dosagem , Pré-Escolar , Serviços de Saúde Comunitária/organização & administração , Feminino , Humanos , Imunoensaio/métodos , Lactente , Malária/prevenção & controle , Masculino , Moçambique , Inquéritos e Questionários
16.
Malar J ; 18(1): 88, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898164

RESUMO

BACKGROUND: The World Health Organization recommends regular therapeutic efficacy studies (TES) to monitor the performance of first and second-line anti-malarials. In 2016, efficacy and safety of artemether-lumefantrine (AL) for the treatment of uncomplicated falciparum malaria were assessed through a TES conducted between April and October 2016 at four sentinel sites of Kibaha, Mkuzi, Mlimba, and Ujiji in Tanzania. The study also assessed molecular markers of artemisinin and lumefantrine (partner drug) resistance. METHODS: Eligible patients were enrolled at the four sites, treated with standard doses of AL, and monitored for 28 days with clinical and laboratory assessments. The main outcomes were PCR corrected cure rates, day 3 positivity rates, safety of AL, and prevalence of single nucleotide polymorphisms in Plasmodium falciparum kelch 13 (Pfk13) (codon positions: 440-600) and P. falciparum multi-drug resistance 1 (Pfmdr1) genes (codons: N86Y, Y184F and D1246Y), markers of artemisinin and lumefantrine resistance, respectively. RESULTS: Of 344 patients enrolled, three withdrew, six were lost to follow-up; and results were analysed for 335 (97.4%) patients. Two patients had treatment failure (one early treatment failure and one recrudescent infection) after PCR correction, yielding an adequate clinical and parasitological response of > 98%. Day 3 positivity rates ranged from 0 to 5.7%. Common adverse events included cough, abdominal pain, vomiting, and diarrhoea. Two patients had serious adverse events; one died after the first dose of AL and another required hospitalization after the second dose of AL (on day 0) but recovered completely. Of 344 samples collected at enrolment (day 0), 92.7% and 100% were successfully sequenced for Pfk13 and Pfmdr1 genes, respectively. Six (1.9%) had non-synonymous mutations in Pfk13, none of which had been previously associated with artemisinin resistance. For Pfmdr1, the NFD haplotype (codons N86, 184F and D1246) was detected in 134 (39.0%) samples; ranging from 33.0% in Mlimba to 45.5% at Mkuzi. The difference among the four sites was not significant (p = 0.578). All samples had a single copy of the Pfmdr1 gene. CONCLUSION: The study indicated high efficacy of AL and the safety profile was consistent with previous reports. There were no known artemisinin-resistance Pfk13 mutations, but there was a high prevalence of a Pfmdr1 haplotype associated with reduced sensitivity to lumefantrine (but no reduced efficacy was observed in the subjects). Continued TES and monitoring of markers of resistance to artemisinin and partner drugs is critical for early detection of resistant parasites and to inform evidence-based malaria treatment policies. Trial Registration ClinicalTrials.gov NCT03387631.


Assuntos
Antimaláricos/efeitos adversos , Combinação Arteméter e Lumefantrina/efeitos adversos , Resistência a Medicamentos/genética , Malária/prevenção & controle , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Protozoários/metabolismo , Tanzânia
17.
J Infect Dis ; 217(5): 685-692, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29220497

RESUMO

Background: The response to antimalarial treatment is assessed using serial microscopy. New techniques for accurate measurement of the Plasmodium falciparum histidine-rich protein 2 (HRP2) antigen have allowed for monitoring of the antigen concentration over time, offering a potential alternative for assessing treatment response. Methods: Posttreatment HRP2 concentrations were measured in samples obtained longitudinally from 537 individuals with P. falciparum malaria who were participating in efficacy trials in Angola, Tanzania, and Senegal. The HRP2 half-life was estimated using a first-order kinetics clearance model. The association between the HRP2 concentration 3 days after treatment and recrudescence of infection was assessed. Results: Despite substantial variation in HRP2 concentrations among participants at baseline, concentrations consistently showed a first-order exponential decline. The median half-life of HRP2 was estimated to be 4.5 days (interquartile range [IQR], 3.3-6.6 days) in Angola, 4.7 days (IQR, 4.0-5.9 days) in Tanzania, and 3.0 days (IQR, 2.1-4.5 days) in Senegal. The day 3 HRP2 concentration was predictive of eventual recrudescence, with an area under the receiver operating characteristic curve of 0.86 (95% confidence interval, .73-.99). Conclusions: Consistent HRP2 clearance dynamics following successful antimalarial treatment imply a common underlying mechanism of biological clearance. Patients who ultimately did not respond to treatment did not exhibit this same pattern of clearance, even in the absence of other indications of inadequate response to treatment.


Assuntos
Antígenos de Protozoários/sangue , Antimaláricos/administração & dosagem , Monitoramento de Medicamentos , Malária Falciparum/tratamento farmacológico , Proteínas de Protozoários/sangue , Adolescente , Angola , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Senegal , Tanzânia , Fatores de Tempo , Adulto Jovem
18.
Emerg Infect Dis ; 24(8): 1578-1580, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30016240

RESUMO

While studying respiratory infections in Peru, we identified Venezuelan equine encephalitis virus (VEEV) in a nasopharyngeal swab, indicating that this alphavirus can be present in human respiratory secretions. Because VEEV may be infectious when aerosolized, our finding is relevant for the management of VEEV-infected patients and for VEEV transmission studies.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/diagnóstico , Genoma Viral , Adolescente , Animais , Chlorocebus aethiops , Cães , Vírus da Encefalite Equina Venezuelana/classificação , Vírus da Encefalite Equina Venezuelana/isolamento & purificação , Encefalomielite Equina Venezuelana/transmissão , Encefalomielite Equina Venezuelana/virologia , Cavalos , Humanos , Células Madin Darby de Rim Canino , Masculino , Nasofaringe/virologia , Peru , Células Vero , Sequenciamento Completo do Genoma
19.
Malar J ; 17(1): 230, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898719

RESUMO

BACKGROUND: Malaria case management in the context of the 2014-2016 West African Ebola virus disease (EVD) epidemic was complicated by a similar initial clinical presentation of the two diseases. In September 2014, the World Health Organization (WHO) released recommendations titled, "Guidance on temporary malaria control measures in Ebola-affected countries", which aimed at reducing the risk of EVD transmission and improving malaria outcomes. This guidance recommended malaria diagnostic testing of fever cases only if adequate personal protective equipment (PPE) was available, defined as examination gloves, face shield, disposable gown, boots, and head cover; otherwise presumptive anti-malarial treatment was recommended. The extent to which health workers adhered to these guidelines in affected countries has not been assessed. METHODS: A cross-sectional survey was conducted in 118 health units in Guinea in November 2014 to produce a representative and probabilistic sample of health facilities and patients. Adherence to the EVD-specific malaria case management guidelines during the height of the EVD epidemic was assessed. Associations between case management practices and possible determinants were calculated using multivariate logistic regression, controlling for expected confounders and the complex sample design. RESULTS: Most (78%) facilities reported availability of examination gloves, but adequate PPE was available at only 27% of facilities. Only 28% of febrile patients received correct malaria case management per the WHO temporary malaria case management guidelines. The most common error was diagnostic testing in the absence of adequate PPE (45% of febrile patients), followed by no presumptive treatment in the absence of adequate PPE (14%). Having had a report of an EVD case at a health facility and health worker-reported participation in EVD-specific malaria trainings were associated with lower odds of diagnostic testing and higher odds of presumptive treatment. CONCLUSIONS: Adherence to guidance on malaria case management in EVD-affected countries was low at the height of the EVD epidemic in Guinea, and there was substantial malaria diagnostic testing in the absence of adequate PPE, which could have contributed to increased EVD transmission in the healthcare setting. Conversely, low presumptive treatment when diagnostic tests were not performed may have led to additional morbidity and mortality among malaria positive patients. National malaria control programs may consider preparing contingency plans for future implementation of temporary changes to malaria case management guidelines to facilitate uptake by health workers. Additional training on standard and transmission-based precautions should help health workers understand how to protect themselves in the face of emerging and unknown pathogens.


Assuntos
Administração de Caso/estatística & dados numéricos , Controle de Doenças Transmissíveis/estatística & dados numéricos , Epidemias , Instalações de Saúde/estatística & dados numéricos , Doença pelo Vírus Ebola/epidemiologia , Malária/prevenção & controle , Estudos Transversais , Guiné/epidemiologia
20.
Malar J ; 17(1): 84, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458380

RESUMO

BACKGROUND: Artemisinin-based combination therapy is the first-line anti-malarial treatment for uncomplicated Plasmodium falciparum infection in Angola. To date, the prevalence of polymorphisms in the pfk13 gene, associated with artemisinin resistance, and pfmdr1, associated with lumefantrine resistance, have not been systematically studied in Angola. METHODS: DNA was isolated from pretreatment and late treatment failure dried blood spots collected during the 2015 round of therapeutic efficacy studies in Benguela, Lunda Sul, and Zaire Provinces in Angola. The pfk13 propeller domain and pfmdr1 gene were sequenced and analysed for polymorphisms. Pfmdr1 copy number variation was assessed using a real-time PCR method. The association between pfmdr1 and pfk13 mutations and treatment failure was investigated. RESULTS: The majority of pretreatment (99%, 466/469) and all late treatment failure (100%, 50/50) samples were wild type for pfk13. Three of the pretreatment samples (1%) carried the A578S mutation commonly observed in Africa and not associated with artemisinin resistance. All 543 pretreatment and day of late treatment failure samples successfully analysed for pfmdr1 copy number variation carried one copy of pfmdr1. The NYD haplotype was the predominant pfmdr1 haplotype, present in 63% (308/491) of pretreatment samples, followed by NFD, which was present in 32% (157/491) of pretreatment samples. The pfmdr1 N86 allele was overrepresented in day of late treatment failure samples from participants receiving artemether-lumefantrine (p value 0.03). CONCLUSIONS: The pretreatment parasites in patients participating in therapeutic efficacy studies in 2015 in Angola's three sentinel sites showed genetic evidence of susceptibility to artemisinins, consistent with clinical outcome data showing greater than 99% day 3 clearance rates. The lack of increased pfmdr1 copy number is consistent with previous reports from sub-Saharan Africa. Although pfmdr1 NYD and NFD haplotypes were overrepresented in artemether-lumefantrine late treatment failure samples, their role as markers of resistance was unclear given that these haplotypes were also present in the majority of successfully treated patients in the artemether-lumefantrine treatment arms.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Biomarcadores/metabolismo , Resistência a Medicamentos , Lumefantrina/farmacologia , Malária Falciparum/prevenção & controle , Angola , Combinação Arteméter e Lumefantrina/administração & dosagem , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA