RESUMO
Modern process research and development can often be hampered by the tedious method development required to chromatographically resolve mixtures of chemical species with very similar physical properties. Herein, we describe a simple approach for the development and implementation of an efficient ultra-high performance liquid chromatography (UHPLC) assay that is extensively applied to the separation and analysis of multicomponent reaction mixtures of closely related pharmaceutical intermediates and impurities. Methods are optimized using multi-column and multi-solvent UHPLC screening in conjunction with chromatography simulation software (ACD Labs/LC Simulator). This approach is implemented to enable the separation, identification, mapping and control of impurities formed within the process chemistry optimization of the dimeric catalyst used in the synthesis of new drug substances. The final method utilized a sub-2 µm C18 stationary phase (2.1 mm I.D. × 50 mm length, 1.7 µm particle size ACQUITY UPLC BEH C18) with a non-conventional chaotropic mobile phase buffer (35 mM potassium hexafluorophosphate in 0.1% phosphoric acid/acetonitrile) in order to achieve baseline separation of all reaction components. The chromatographic simulation and modeling strategy served to generate 3D resolution maps with robust separation conditions that match the outcome of subsequent experimental data (overall ΔtR < 0.35%). Our multi-column UHPLC screening with computer-assisted chromatographic modeling is a great addition to the toolbox of synthetic chemists and can be a powerful tool for streamlining process chemistry optimization in organic chemistry laboratories across both academic and industrial sectors.
Assuntos
Carbamatos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Compostos Heterocíclicos com 2 Anéis/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentação , Simulação por ComputadorRESUMO
Biocatalytic processes have become more prevalent in the pharmaceutical industry, leading to analytical challenges not faced when characterizing more traditional synthetic routes. A novel one-pot biocatalytic process has been established for Islatravir, an HIV reverse transcriptase translocation inhibitor for the treatment and prevention of HIV-1. As a one-pot reaction, the Islatravir chemistry contains multiple intermediates that are not isolated. Additionally, these unisolated intermediates have no chromophores, making traditional LC-UV techniques ineffective for characterization. A hydrophilic interaction chromatography (HILIC) method with a charged aerosol detector (CAD) was initially developed, however numerous inorganic species present in the one-pot reaction were retained; this led to co-elution of compounds and poor peak shapes. An innovative ion-pairing LC method was developed in order to resolve inorganic species, intermediates, and the API, for use during in-process control of the Islatravir biocatalytic reaction. Aided by a volatile ion-pairing reagent compatible with the CAD, this method successfully retains and resolves the highly polar intermediates of interest and Islatravir API. This novel method was successfully validated and has allowed the Islatravir biocatalytic process to be fully characterized from the early intermediates through the final API within the one-pot reaction without the need for isolations. This novel ion-pairing HPLC-CAD technique lays the groundwork for method development on current and future biocatalytic-produced drug substances.
Assuntos
Desoxiadenosinas , Aerossóis , Cromatografia Líquida de Alta Pressão/métodos , Interações Hidrofóbicas e HidrofílicasRESUMO
Within the pharmaceutical industry, the determination of residual solvents by Gas Chromatography Flame Ionization Detection (GC-FID) is a highly utilized analytical test that often employs helium (He) as the carrier gas. However, many do not realize that helium is a non-renewable resource that will eventually become progressively more difficult to source. In recent years, analytical chemists are increasingly adopting hydrogen (H2) in place of helium for routine GC analysis. In this study, a simple and efficient generic/universal GC-FID method using H2 as the carrier gas has been developed with the capability of baseline resolution of over 30 of the most commonly used solvents in development and manufacturing with a method run time of less than eight minutes. The use of this method for the separation and analysis of solvents within a pharmaceutical manufacturing process is demonstrated with additional method validation data presented using five different diluents as a means to increase flexibility for the chromatographer. Furthermore, it is the recommendation of the authors that the current compendia for residual solvent analysis be updated to allow for hydrogen as a carrier gas. The similarity between He and H2 observed within this study supports the use of hydrogen as a suitable replacement for helium, and an update of the EU and USP compendia for residual solvent analysis should be made to reflect this.
Assuntos
Cromatografia Gasosa/métodos , Ionização de Chama/métodos , Hidrogênio/química , Solventes/análise , Indústria Farmacêutica/métodos , Solventes/químicaRESUMO
In recent years, charged aerosol detection (CAD) has become a valuable tool for fast and efficient quantitative chromatographic analysis of drug substances with weak UV absorption. In analytical method development using CAD, the power function settings available in the instrument software are key for linearization of the signal response with respect to analyte concentration. However, the relatively poor understanding of the power function algorithm has limited a more widespread use of CAD for quantitative assays, especially in the late stage of method validation and GMP laboratories. Herein, we present an approach to understand the inner workings of the power function value (PFV), the PFV optimization algorithm, as well as a method to determine the optimum PFV based on the signals acquired at PFVâ¯=â¯1 (default CAD settings). The exponent and the constant in the PFV equation used for modeling follow a trend as a function of PFV. The CAD signal at any PFV was modeled based on the signal acquired at PFVâ¯=â¯1, the modelling was successful for two analytes at different concentration levels on two different CAD detectors of the same model. This method reveals the functionality of the PFV which substantially simplifies the workflow needed to optimize the detector signal. The accuracy between the experimental and theoretical results showed high correlation and always resulted in the same optimum PFV determined by both ways. The approach described in this investigation simplifies the selection of the optimum PFV at which the signal is more linear, the signal-to-noise is higher, and the area reproducibility is better. The power function algorithm elucidated herein enables determination of optimum PFV from minimal experimental output and excellent overall accuracy. This paper provides an approach that includes no data transformation outside the vendor software, a very important requirement to easily validate and report results in a GMP environment.
Assuntos
Aerossóis/análise , Algoritmos , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/normas , Preparações Farmacêuticas/análise , Química Farmacêutica , Reprodutibilidade dos TestesRESUMO
Enzyme-catalyzed reactions have begun to transform pharmaceutical manufacturing, offering levels of selectivity and tunability that can dramatically improve chemical synthesis. Combining enzymatic reactions into multistep biocatalytic cascades brings additional benefits. Cascades avoid the waste generated by purification of intermediates. They also allow reactions to be linked together to overcome an unfavorable equilibrium or avoid the accumulation of unstable or inhibitory intermediates. We report an in vitro biocatalytic cascade synthesis of the investigational HIV treatment islatravir. Five enzymes were engineered through directed evolution to act on non-natural substrates. These were combined with four auxiliary enzymes to construct islatravir from simple building blocks in a three-step biocatalytic cascade. The overall synthesis requires fewer than half the number of steps of the previously reported routes.
Assuntos
Biocatálise , Desoxiadenosinas/química , Inibidores da Transcriptase Reversa/química , Biotecnologia/métodos , Preparações Farmacêuticas/síntese química , EstereoisomerismoRESUMO
Volatile amines are among the most frequently used chemicals in organic and pharmaceutical chemistry. Synthetic route optimization often involves the evaluation of several different amines requiring the development and validation of analytical methods for quantitation of residual amine levels. Herein, a simple and fast generic GC-FID method on an Agilent J&W CP-Volamine capillary column (using either He or H2 as the carrier gas) capable of separating over 25 volatile amines and other basic polar species commonly used in pharmaceutical chemistry workflows is described. This 16min method is successfully applied to the analysis and quantitation of volatile amines in a variety of pharmaceutically-related drugs and synthetic intermediates. Method validation experiments showed excellent analytical performance in linearity, recovery, repeatability, and limit of quantitation and detection. In addition, diverse examples for the application of this method to the simultaneous determination of other amine-related chemicals in reaction mixtures are illustrated, thereby indicating that these GC-FID method conditions can be effectively used as starting point during method development for the analysis of other basic polar species beyond the validated list of amines described in this study.