Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Radiol ; 28(2): 309-315, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33052501

RESUMO

PURPOSE: To determine the optimal slice thickness of brain non-contrast computed tomography using a hybrid iterative reconstruction algorithm to identify hyperdense middle cerebral artery sign in patients with acute ischemic stroke. METHODS: We retrospectively enrolled 30 patients who had presented hyperdense middle cerebral artery sign and 30 patients who showed no acute ischemic change in acute magnetic resonance imaging. Reformatted axial images at an angle of the orbitomeatal line in slice thicknesses of 0.5, 1, 3, 5, and 7 mm were generated. Optimal slice thickness for identifying hyperdense middle cerebral artery sign was evaluated by a receiver operating characteristics curve analysis and area under the curve (AUC). RESULTS: The mean AUC value of 0.5-mm slice (0.921; 95% confidence interval (95% CI), 0.868 to 0.975) was significantly higher than those of 3-mm (0.791; 95% CI, 0.686 to 0.895; p = 0.041), 5-mm (0.691; 95% CI, 0.583 to 0.799, p < 0.001), and 7-mm (0.695; 95% CI, 0.593 to 0.797, p < 0.001) slices, whereas it was equivalent to that of 1-mm slice (0.901; 95% CI, 0.837 to 0.965, p = 0.751). CONCLUSION: Thin slice thickness of ≤ 1 mm has a better diagnostic performance for identifying hyperdense artery sign on brain non-contrast computed tomography with a hybrid iterative reconstruction algorithm in patients with acute ischemic stroke.


Assuntos
AVC Isquêmico/diagnóstico por imagem , Artéria Cerebral Média/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
2.
Sci Rep ; 11(1): 15627, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341462

RESUMO

Body weight is an indispensable parameter for determination of contrast medium dose, appropriate drug dosing, or management of radiation dose. However, we cannot always determine the accurate patient body weight at the time of computed tomography (CT) scanning, especially in emergency care. Time-efficient methods to estimate body weight with high accuracy before diagnostic CT scans currently do not exist. In this study, on the basis of 1831 chest and 519 abdominal CT scout images with the corresponding body weights, we developed and evaluated deep-learning models capable of automatically predicting body weight from CT scout images. In the model performance assessment, there were strong correlations between the actual and predicted body weights in both chest (ρ = 0.947, p < 0.001) and abdominal datasets (ρ = 0.869, p < 0.001). The mean absolute errors were 2.75 kg and 4.77 kg for the chest and abdominal datasets, respectively. Our proposed method with deep learning is useful for estimating body weights from CT scout images with clinically acceptable accuracy and potentially could be useful for determining the contrast medium dose and CT dose management in adult patients with unknown body weight.


Assuntos
Peso Corporal , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Adulto , Humanos , Masculino , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA