Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257509

RESUMO

Gallium liquid metals (LMs) like Galinstan and eutectic Gallium-Indium (EGaIn) have seen increasing applications in heavy metal ion (HMI) sensing, because of their ability to amalgamate with HMIs like lead, their high hydrogen potential, and their stable electrochemical window. Furthermore, coating LM droplets with nanopowders of tungsten oxide (WO) has shown enhancement in HMI sensing owing to intense electrical fields at the nanopowder-liquid-metal interface. However, most LM HMI sensors are droplet based, which show limitations in scalability and the homogeneity of the surface. A scalable approach that can be extended to LM electrodes is therefore highly desirable. In this work, we present, for the first time, WO-Galinstan HMI sensors fabricated via photolithography of a negative cavity, Galinstan brushing inside the cavity, lift-off, and galvanic replacement (GR) in a tungsten salt solution. Successful GR of Galinstan was verified using optical microscopy, SEM, EDX, XPS, and surface roughness measurements of the Galinstan electrodes. The fabricated WO-Galinstan electrodes demonstrated enhanced sensitivity in comparison with electrodes structured from pure Galinstan and detected lead at concentrations down to 0.1 mmol·L-1. This work paves the way for a new class of HMI sensors using GR of WO-Galinstan electrodes, with applications in microfluidics and MEMS for a toxic-free environment.

2.
Adv Sci (Weinh) ; 11(20): e2307175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493493

RESUMO

Transparent polycrystalline magnesium aluminate (MAS) spinel ceramics are of great interest for industry and academia due to their excellent optical and mechanical properties. However, shaping of MAS is notoriously challenging especially on the microscale requiring hazardous etching methods. Therefore, a photochemically curable nanocomposite is demonstrated that can be structured using high-resolution two-photon lithography. The printed nanocomposites are converted intro transparent MAS by subsequent debinding, sintering, and hot isostatic pressing. The resulting transparent spinel ceramics exhibit a surface roughness Sq of only 10 nm and can be shaped with minimum feature sizes of down to 13 µm. This technology will be important for the production of microstructured ceramics used for optics, photonics, or photocatalysis.

3.
Nat Commun ; 13(1): 5048, 2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030264

RESUMO

Tool based manufacturing processes like injection moulding allow fast and high-quality mass-market production, but for optical polymer components the production of the necessary tools is time-consuming and expensive. In this paper a process to fabricate metal-inserts for tool based manufacturing with smooth surfaces via a casting and replication process from fused silica templates is presented. Bronze, brass and cobalt-chromium could be successfully replicated from shaped fused silica replications achieving a surface roughnesses of Rq 8 nm and microstructures in the range of 5 µm. Injection moulding was successfully performed, using a commercially available injection moulding system, with thousands of replicas generated from the same tool. In addition, three-dimensional bodies in metal could be realised with 3D-Printing of fused silica casting moulds. This work thus represents an approach to high-quality moulding tools via a scalable facile and cost-effective route surpassing the currently employed cost-, labour- and equipment-intensive machining techniques.

4.
Adv Sci (Weinh) ; 9(31): e2204385, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36057994

RESUMO

Transparent ceramics like magnesium aluminate spinel (MAS) are considered the next step in material evolution showing unmatched mechanical, chemical and physical resistance combined with high optical transparency. Unfortunately, transparent ceramics are notoriously difficult to shape, especially on the microscale. Therefore, a thermoplastic MAS nanocomposite is developed that can be shaped by polymer injection molding at high speed and precision. The nanocomposite is converted to dense MAS by debinding, pre-sintering, and hot isostatic pressing yielding transparent ceramics with high optical transmission up to 84 % and high mechanical strength. A transparent macroscopic MAS components with wall thicknesses up to 4 mm as well as microstructured components with single micrometer resolution are shown. This work makes transparent MAS ceramics accessible to modern high-throughput polymer processing techniques for fast and cost-efficient manufacturing of macroscopic and microstructured components enabling a plethora of potential applications from optics and photonics, medicine to scratch and break-resistant transparent windows for consumer electronics.


Assuntos
Cerâmica , Nanocompostos , Polímeros
5.
Adv Sci (Weinh) ; 8(23): e2103180, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668342

RESUMO

In recent years, additive manufacturing (AM) of glass has attracted great interest in academia and industry, yet it is still mostly limited to liquid nanocomposite-based approaches for stereolithography, two-photon polymerization, or direct ink writing. Melt-extrusion-based processes, such as fused deposition modeling (FDM), which will allow facile manufacturing of large thin-walled components or simple multimaterial printing processes, are so far inaccessible for AM of transparent fused silica glass. Here, melt-extrusion-based AM of transparent fused silica is introduced by FDM and fused feedstock deposition (FFD) using thermoplastic silica nanocomposites that are converted to transparent glass using debinding and sintering. This will enable printing of previously inaccessible glass structures like high-aspect-ratio (>480) vessels with wall thicknesses down to 250 µm, delicate parts including overhanging features using polymer support structures, as well as dual extrusion for multicolored glasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA