RESUMO
The transition of the current fossil based chemical industry to a carbon-neutral industry can be done by the substitution of fossil carbon for defossilized carbon in the production of base chemicals. Methanol is one of the seven base chemicals, which could be used to produce other base chemicals (light olefins and aromatics). In this research, we evaluated the synthesis of methanol based on defossilized carbon sources (maize, waste biomass, direct air capture of CO2 (DAC), and CO2 from the cement industry) by considering carbon source availability, energy, water, and land demand. This evaluation was based on a carbon balance for each of the carbon sources. Our results show that maize, waste biomass, and CO2 cement could supply 0.7, 2, 15 times the carbon demand for methanol respectively. Regarding the energy demand maize, waste biomass, DAC, and CO2 from cement demand 25, 21, 48, and 45GJtonMeOH separately. The demand for water is 5300, 220, 8, and 8m3tonMeOH. And lastly, land demand was estimated to 1031, 36, 83, and 77m2tonMeOH per carbon source. The high-demanding-resource production of defossilized methanol is dependent on the availability of resources per location. Therefore, we analyzed the production of defossilized methanol in the Netherlands, Saudi Arabia, China, and the USA. China is the only country where CO2 from the cement industry could provide all the demand of carbon. But as we envision society becoming carbon neutral, CO2 from the cement industry would diminish in time, as a consequence, it would not be sufficient to supply the demand for carbon. DAC would be the only source able to provide the demand for defossilized carbon.
Assuntos
Dióxido de Carbono , Metanol , Dióxido de Carbono/análise , Carbono , China , ÁguaRESUMO
The accumulation of electrons in the form of Extracellular Polymeric Substances (EPS) and poly-hydroxyalkanoates (PHA) has been studied in anaerobic processes by adjusting the access of microorganisms to the electron donor and final electron acceptor. In Bio-electrochemical systems (BESs), intermittent anode potential regimes have also recently been used to study electron storage in anodic electro-active biofilms (EABfs), but the effect of electron donor feeding mode on electron storage has not been explored. Therefore, in this study, the accumulation of electrons in the form of EPS and PHA was studied as a function of the operating conditions. EABfs were grown under both constant and intermittent anode potential regimes and fed with acetate (electron donor) continuously or in batch. Confocal Laser Scanning Microscopy (CLSM) and Fourier-Transform Infrared Spectroscopy (FTIR) were used to assess electron storage. The range of Coulombic efficiencies, from 25 to 82%, and the biomass yields, between 10 and 20%, indicate that storage could have been an alternative electron consuming process. From image processing, a 0.92 pixel ratio of poly-hydroxybutyrate (PHB) and amount of cells was found in the batch fed EABf grown under a constant anode potential. This storage was linked to the presence of living Geobacter and shows that energy gain and carbon source starvation were the triggers for intracellular electron storage. The highest EPS content (extracellular storage) was observed in the continuously fed EABf under an intermittent anode potential, showing that constant access to electron donor and intermittent access to the electron acceptor leads to the formation of EPS from the excess energy gained. Tailoring operating conditions can thus steer the microbial community and result in a trained EABf to perform a desired biological conversion, which can be beneficial for a more efficient and optimized BES.
Assuntos
Fontes de Energia Bioelétrica , Geobacter , Elétrons , Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Transporte de Elétrons , Eletrodos , OxidantesRESUMO
The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors.
Assuntos
Fontes de Energia Bioelétrica , Biota , Poaceae/microbiologia , Archaea/classificação , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Eletricidade , Eletrodos/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do SoloRESUMO
The accumulation of protons in electro-active biofilms (EABfs) has been reported as a critical parameter determining produced currents at the anode since the very beginning of the studies on Bio-electrochemical systems (BESs). Even though the knowledge gained on the influence of this parameter on the produced currents, its influence on EABfs growth is frequently overlooked. In this study, we quantified EABfs thicknesses in real-time and related them to the produced current at three buffer concentrations, two anode potentials and two acetate concentrations. The thickest EABfs (80 µm) and higher produced currents (2.5 A.m-2) were measured when a 50 mM buffer concentration was used. By combining the measured EABfs thicknesses with the pH in the anolyte, a simple model was developed to identify buffer limitations. Buffer limited EABfs with thicknesses of 15 and 42 µm were identified at -0.3 V vs Ag/AgCl when 10 and 50 mM buffer concentrations were used, respectively. At -0.2 V vs Ag/AgCl, the thicknesses of buffer limited EABfs decreased to 13 and 20 µm, respectively. The model also estimated buffer and acetate diffusion rates in EABfs and allowed to determine the boundary between a buffer and acetate limited EABfs. The diffusion rates reported in this study and the definition of the boundary between buffer and acetate limited EABfs provide a powerful tool to avoid limitations, leading to higher produced currents at the anode.
RESUMO
Electro-active bacteria (EAB) can form biofilms on an anode (so-called bioanodes), and use the electrode as electron acceptor for oxidation of organics in wastewater. So far, bioanodes have mainly been investigated under a continuous anode potential, but intermittent anode potential has resulted in higher currents and different biofilm morphologies. However, little is known about how intermittent potential influences the electron balance in the anode compartment. In this study, we investigated electron balances of bioanodes at intermittent anode potential regimes. We used a transparent non-capacitive electrode that also allowed for in-situ quantification of the EAB using optical coherence tomography (OCT). We observed comparable current densities between continuous and intermittent bioanodes, and stored charge was similar for all the applied intermittent times (5â¯mC). Electron balances were further investigated by quantifying Extracellular Polymeric Substances (EPS), by analyzing the elemental composition of biomass, and by quantifying biofilm and planktonic cells. For all tested conditions, a charge balance of the anode compartment showed that more electrons were diverted to planktonic cells than biofilm. Besides, 27-43% of the total charge was detected as soluble EPS in intermittent bioanodes, whereas only 15% was found as soluble EPS in continuous bioanodes. The amount of proteins in the EPS of biofilms was higher for intermittent operated bioanodes (0.21â¯mg COD proteins mg COD biofilm-1) than for continuous operated bioanodes (0.05â¯mg COD proteins mg COD biofilm-1). OCT revealed patchy morphologies for biofilms under intermittent anode potential. Overall, this study helped understanding that the use of a non-capacitive electrode and intermittent anode potential deviated electrons to other processes other than electric current at the electrode by identifying electron sinks in the anolyte and quantifying the accumulation of electrons in the form of EPS.
RESUMO
In this paper we studied the performance of bioanodes under different experimental conditions using polarization curves and impedance spectroscopy. We have identified that the large capacitances of up to 1 mF·cm(-2) for graphite anodes have their origin in the nature of the carbonaceous electrode, rather than the microbial culture. In some cases, the separate contributions of charge transfer and diffusion resistance were clearly visible, while in other cases their contribution was masked by the high capacitance of 1 mF·cm(-2). The impedance data were analyzed using the basic Randles model to analyze ohmic, charge transfer and diffusion resistances. Increasing buffer concentration from 0 to 50mM and increasing pH from 6 to 8 resulted in decreased charge transfer and diffusion resistances; lowest values being 144 Ω·cm(2) and 34 Ω·cm(2), respectively. At acetate concentrations below 1 mM, current generation was limited by acetate. We show a linear relationship between inverse charge transfer resistance at potentials close to open circuit and saturation (maximum) current, associated to the Butler-Volmer relationship that needs further exploration.
Assuntos
Fontes de Energia Bioelétrica , Espectroscopia Dielétrica , Acetatos/química , Soluções Tampão , Eletroquímica , Eletrodos , Grafite/química , Concentração de Íons de HidrogênioRESUMO
Traditional composting systems for biowaste generally produce low quality composts that may endanger recycling. A pilot-scale bioconversion process yielding quality compost and renewable energy was designed and tested. The process consisted of a set of wet physical separation units, composting and anaerobic digestion. Biowaste was divided in four streams by physical separation: (1) organic fraction >2 mm, (2) inorganic fraction 0.05-2 mm, (3) residual fraction composed of organics 0.05-2 mm and the fraction <0.05 mm and (4) a fraction solubilised in the washing water. The organic fraction >2 mm was composted and the compost, high in organic matter and low in EC and heavy metals, aimed at replacing peat in horticulture. The inorganic fraction 0.05-2 mm was completely made up of sand and can be used as a construction material. Solubilised organic matter in the washing water was converted to CH(4) by anaerobic digestion. The residual fraction can be used as landfill cover material.
Assuntos
Bactérias Anaeróbias/metabolismo , Fontes de Energia Bioelétrica , Reatores Biológicos , Eliminação de Resíduos/métodos , Biodegradação Ambiental , Metano , Solo/análise , Fatores de TempoRESUMO
Biowaste, the separately collected organic fraction of municipal solid waste, can be reused for soil conditioning after composting. In this way, environmentally harmful waste management strategies, such as landfilling or incineration, can be reduced. However, frequent application of composts to soil systems may lead to the accumulation of heavy metals in soils, and therefore legal criteria were laid down in a decree to guarantee the safe use of composts. The heavy metal content of biowaste-composts frequently exceeds the legal standards, and thus raises a conflict between two governmental policies: the recycling of solid waste on the one hand, and the protection of natural ecosystems and public health on the other hand. In this study, the heavy metal content (Cd, Cu, Pb and Zn) of biowaste was compared with the natural background content of Cd, Cu, Pb and Zn in the different constituents of biowaste. For this, the physical entities of biowaste were physically fractionated by wet-sieving and subsequent water-elutriation. In this way, organic and inorganic fractions of different particle sizes were obtained and the content of Cd, Cu, Pb and Zn and the organic matter content of the different fractions were determined. On the basis of particle size, density and visual appearance, the particle-size fractions were assigned to various indoor and outdoor origins of the biowaste. It was found that a large amount of biowaste was not organic, but over 50% was made up of soil minerals due to the collection of biowaste constituents from gardens. The heavy metal content of the various fractions in biowaste was compared with the natural background contents of heavy metals in the constituents of biowaste, i.e. food products, plant material, soil organic matter and soil minerals, by collecting literature data. The heavy metal content in the fractionated physical entities of biowaste corresponded with the natural background concentration of its constituents and indicated that biowaste was not contaminated by other sources. However, the natural background content of biowaste constituents will result in heavy metal contents for biowaste-compost that will exceed the legal standards. It is advised that the legal standards for composts should be critically re-examined. The protection of soil systems could be better guaranteed if the input of heavy metals was evaluated for all inputs of fertilisers and soil conditioners, i.e. animal manures, various types of compost and artificial fertilisers.
Assuntos
Conservação dos Recursos Naturais , Metais Pesados/análise , Eliminação de Resíduos , Agricultura , Biomassa , Meio Ambiente , Fertilizantes , Valores de Referência , Poluentes do Solo/análiseRESUMO
Microbial fuel cell (MFC) research is a rapidly evolving field that lacks established terminology and methods for the analysis of system performance. This makes it difficult for researchers to compare devices on an equivalent basis. The construction and analysis of MFCs requires knowledge of different scientific and engineering fields, ranging from microbiology and electrochemistry to materials and environmental engineering. Describing MFC systems therefore involves an understanding of these different scientific and engineering principles. In this paper, we provide a review of the different materials and methods used to construct MFCs, techniques used to analyze system performance, and recommendations on what information to include in MFC studies and the most useful ways to present results.