Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Phys Rev Lett ; 132(15): 152502, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682998

RESUMO

^{134}Xe is a candidate isotope for neutrinoless double beta decay (0νßß) search. In addition, the two-neutrino case (2νßß) allowed by the standard model of particle physics has not yet been observed. With the 656-kg natural xenon in the fiducial volume of the PandaX-4T detector, which contains 10.4% of ^{134}Xe, and its initial 94.9-day exposure, we have established the most stringent constraints on 2νßß and 0νßß of ^{134}Xe half-lives, with limits of 2.8×10^{22} yr and 3.0×10^{23} yr at 90% confidence level, respectively. The 2νßß (0νßß) limit surpasses the previously reported best result by a factor of 32 (2.7), highlighting the potential of large monolithic natural xenon detectors for double beta decay searches.

2.
Phys Rev Lett ; 130(26): 261001, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450819

RESUMO

We report the search results of light dark matter through its interactions with shell electrons and nuclei, using the commissioning data from the PandaX-4T liquid xenon detector. Low energy events are selected to have an ionization-only signal between 60 to 200 photoelectrons, corresponding to a mean nuclear recoil energy from 0.77 to 2.54 keV and electronic recoil energy from 0.07 to 0.23 keV. With an effective exposure of 0.55 tonne·year, we set the most stringent limits within a mass range from 40 MeV/c^{2} to 10 GeV/c^{2} for pointlike dark matter-electron interaction, 100 MeV/c^{2} to 10 GeV/c^{2} for dark matter-electron interaction via a light mediator, and 3.2 to 4 GeV/c^{2} for dark matter-nucleon spin-independent interaction. For DM interaction with electrons, our limits are closing in on the parameter space predicted by the freeze-in and freeze-out mechanisms in the early Universe.


Assuntos
Núcleo Celular , Elétrons
3.
Phys Rev Lett ; 131(4): 041001, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566838

RESUMO

We report a search for light dark matter produced through the cascading decay of η mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasielastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne·year exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross section is set at 5.9×10^{-37} cm^{2} for a dark matter mass of 0.1 MeV/c^{2} and mediator mass of 300 MeV/c^{2}. The lowest upper limit of η to the dark matter decay branching ratio is 1.6×10^{-7}.

4.
Phys Rev Lett ; 130(2): 021802, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36706410

RESUMO

A search for interactions from solar ^{8}B neutrinos elastically scattering off xenon nuclei using PandaX-4T commissioning data is reported. The energy threshold of this search is further lowered compared with the previous search for dark matter, with various techniques utilized to suppress the background that emerges from data with the lowered threshold. A blind analysis is performed on the data with an effective exposure of 0.48 tonne year, and no significant excess of events is observed. Among the results obtained using the neutrino-nucleus coherent scattering, our results give the best constraint on the solar ^{8}B neutrino flux. We further provide a more stringent limit on the cross section between dark matter and nucleon in the mass range from 3 to 9 GeV/c^{2}.

5.
Phys Rev Lett ; 131(19): 191002, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000419

RESUMO

We report results of a search for dark-matter-nucleon interactions via a dark mediator using optimized low-energy data from the PandaX-4T liquid xenon experiment. With the ionization-signal-only data and utilizing the Migdal effect, we set the most stringent limits on the cross section for dark matter masses ranging from 30 MeV/c^{2} to 2 GeV/c^{2}. Under the assumption that the dark mediator is a dark photon that decays into scalar dark matter pairs in the early Universe, we rule out significant parameter space of such thermal relic dark-matter model.

6.
Cell Mol Life Sci ; 78(5): 1983-2000, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33170304

RESUMO

The efficacy of targeted therapy in non-small-cell lung cancer (NSCLC) has been impeded by various mechanisms of resistance. Besides the mutations in targeted oncogenes, reversible lineage plasticity has recently considered to play a role in the development of tyrosine kinase inhibitors (TKI) resistance in NSCLC. Lineage plasticity enables cells to transfer from one committed developmental pathway to another, and has been a trigger of tumor adaptation to adverse microenvironment conditions including exposure to various therapies. More importantly, besides somatic mutation, lineage plasticity has also been proposed as another source of intratumoural heterogeneity. Lineage plasticity can drive NSCLC cells to a new cell identity which no longer depends on the drug-targeted pathway. Histological transformation and epithelial-mesenchymal transition are two well-known pathways of lineage plasticity-mediated TKI resistance in NSCLC. In the last decade, increased re-biopsy practice upon disease recurrence has increased the recognition of lineage plasticity induced resistance in NSCLC and has improved our understanding of the underlying biology. Long non-coding RNAs (lncRNAs), the dark matter of the genome, are capable of regulating variant malignant processes of NSCLC like the invisible hands. Recent evidence suggests that lncRNAs are involved in TKI resistance in NSCLC, particularly in lineage plasticity-mediated resistance. In this review, we summarize the mechanisms of lncRNAs in regulating lineage plasticity and TKI resistance in NSCLC. We also discuss how understanding these themes can alter therapeutic strategies, including combination therapy approaches to overcome TKI resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
7.
J Cell Mol Med ; 24(1): 711-721, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746108

RESUMO

Oesophageal cancer (ESCA) is a clinically challenging disease with poor prognosis and health-related quality of life. Here, we investigated the transcriptome of ESCA to identify high risk-related signatures. A total of 159 ESCA patients of The Cancer Genome Atlas (TCGA) were sorted by three phases. In the discovery phase, differentially expressed transcripts were filtered; in the training phase, two adjusted Cox regressions and two machine leaning models were used to construct and estimate signatures; and in the validation phase, prognostic signatures were validated in the testing dataset and the independent external cohort. We constructed two signatures from three types of RNA markers by Akaike information criterion (AIC) and least absolute shrinkage and selection operator (LASSO) Cox regressions, respectively, and all candidate markers were further estimated by Random Forest (RFS) and Support Vector Machine (SVM) algorithms. Both signatures had good predictive performances in the independent external oesophageal squamous cell carcinoma (ESCC) cohort and performed better than common clinicopathological indicators in the TCGA dataset. Machine learning algorithms predicted prognosis with high specificities and measured the importance of markers to verify the risk weightings. Furthermore, the cell function and immunohistochemical (IHC) staining assays identified that the common risky marker FABP3 is a novel oncogene in ESCA.


Assuntos
Algoritmos , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Aprendizado de Máquina , Transcriptoma , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
8.
J Exp Clin Cancer Res ; 42(1): 169, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461053

RESUMO

BACKGROUND: Circular RNAs (circRNAs) contribute to multiple biological functions and are also involved in pathological conditions such as cancer. However, the role of circRNAs in metabolic reprogramming, especially upon energy stress in lung adenocarcinoma (LUAD), remains largely unknown. METHODS: Energy stress-induced circRNA was screened by circRNA profiling and glucose deprivation assays. RNA-seq, real-time cell analyzer system (RTCA) and measurement of oxygen consumption rate (OCR) were performed to explore the biological functions of circZFR in LUAD. The underlying mechanisms were investigated using circRNA pull-down, RNA immunoprecipitation, immunoprecipitation and bioinformatics analysis of alternative splicing. Clinical implications of circZFR were assessed in 92 pairs of LUAD tissues and adjacent non-tumor tissues, validated in established patient-derived tumor xenograft (PDTX) model. RESULTS: CircZFR is induced by glucose deprivation and is significantly upregulated in LUAD compared to adjacent non-tumor tissues, enhancing oxidative phosphorylation (OXPHOS) for adaptation to energy stress. CircZFR is strongly associated with higher T stage and poor prognosis in patients with LUAD. Mechanistically, circZFR protects heterogeneous nuclear ribonucleoprotein L-like (HNRNPLL) from degradation by ubiquitination to regulate alternative splicing, such as myosin IB (MYO1B), and subsequently activates the AKT-mTOR pathway to facilitate OXPHOS. CONCLUSION: Our study provides new insights into the role of circRNAs in anticancer metabolic therapies and expands our understanding of alternative splicing.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , Fosforilação Oxidativa , Processamento Alternativo , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral
9.
J Hematol Oncol ; 15(1): 141, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209111

RESUMO

BACKGROUND: Besides featured glucose consumption, recent studies reveal that cancer cells might prefer "addicting" specific energy substrates from the tumor microenvironment (TME); however, the underlying mechanisms remain unclear. METHODS: Fibroblast-specific long noncoding RNAs were screened using RNA-seq data of our NJLCC cohort, TCGA, and CCLE datasets. The expression and package of LINC01614 into exosomes were identified using flow cytometric sorting, fluorescence in situ hybridization (FISH), and quantitative reverse transcription polymerase chain reaction (RT-PCR). The transfer and functional role of LINC01614 in lung adenocarcinoma (LUAD) and CAFs were investigated using 4-thiouracil-labeled RNA transfer and gain- and loss-of-function approaches. RNA pull-down, RNA immunoprecipitation, dual-luciferase assay, gene expression microarray, and bioinformatics analysis were performed to investigate the underlying mechanisms involved. RESULTS: We demonstrate that cancer-associated fibroblasts (CAFs) in LUAD primarily enhance the glutamine metabolism of cancer cells. A CAF-specific long noncoding RNA, LINC01614, packaged by CAF-derived exosomes, mediates the enhancement of glutamine uptake in LUAD cells. Mechanistically, LINC01614 directly interacts with ANXA2 and p65 to facilitate the activation of NF-κB, which leads to the upregulation of the glutamine transporters SLC38A2 and SLC7A5 and eventually enhances the glutamine influx of cancer cells. Reciprocally, tumor-derived proinflammatory cytokines upregulate LINC01614 in CAFs, constituting a feedforward loop between CAFs and cancer cells. Blocking exosome-transmitted LINC01614 inhibits glutamine addiction and LUAD growth in vivo. Clinically, LINC01614 expression in CAFs is associated with the glutamine influx and poor prognosis of patients with LUAD. CONCLUSION: Our study highlights the therapeutic potential of targeting a CAF-specific lncRNA to inhibit glutamine utilization and cancer progression in LUAD.


Assuntos
Adenocarcinoma , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , RNA Longo não Codificante , Adenocarcinoma/genética , Fibroblastos Associados a Câncer/patologia , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Hibridização in Situ Fluorescente , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Luciferases/genética , Luciferases/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral
10.
Cancer Commun (Lond) ; 41(7): 596-614, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34105888

RESUMO

BACKGROUND: Emerging evidence suggests that long noncoding RNAs (lncRNAs) play crucial roles in various cancers. In the present study, we aim to investigate the function and molecular mechanism of an up-regulated and survival-associated lncRNA, LINC00525, in lung adenocarcinoma (LUAD). METHODS: The expression level of LINC00525 in tissues was determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH). The functional role of LINC00525 in LUAD was investigated using gain-and loss-of-function approaches, both in vivo and in vitro. RNA pull-down, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), triplex-capture assay, dual-luciferase assay, gene expression microarray, and bioinformatics analysis were used to investigate the potential underlying mechanisms involved. RESULTS: LINC00525 is highly expressed in LUAD cells and tissues. Survival analysis indicated that upregulation of LINC00525 was associated with poor prognosis in patients with LUAD patients. Knockdown of LINC00525 inhibited cell proliferation and cell cycle progression in vitro. In xenograft models, LINC00525 knockdown suppressed tumor growth and tumorigenesis of tumor-bearing mice. Mechanistically, LINC00525 epigenetically suppressed p21 transcription by guiding Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit (EZH2) to the p21 promoter through an formation of RNA-DNA triplex with the p21 promoter, leading to increased trimethylation of lysine 27 on histone 3 (H3K27me3) of the p21 promoter. In addition, LINC00525 repressed p21 expression post-transcriptionally by enhancing p21 mRNA decay. LINC00525 promoted p21 mRNA decay by competitively binding to RNA Binding Motif Single Stranded Interacting Protein 2 (RBMS2). CONCLUSION: Our findings demonstrate that LINC00525 promotes the progression of LUAD by reducing the transcription and stability of p21 mRNA in concert with EZH2 and RBMS2, thus suggesting that LINC00525 may be a potential therapeutic target for clinical intervention in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , RNA Longo não Codificante , Adenocarcinoma de Pulmão/genética , Animais , Linhagem Celular Tumoral , Cromatina , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Camundongos , Estabilidade de RNA , RNA Longo não Codificante/genética
11.
Clin Transl Med ; 11(2): e316, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33634993

RESUMO

BACKGROUND: Little is known about noncoding oncogenes of lung adenocarcinoma (LUAD), and these potential drivers might provide novel therapeutic targets. METHODS: Since abnormally overexpression of oncogenic drivers is induced by genomic variation, we here utilized genomic, transcriptomic, and clinical prognosis data of The Cancer Genome Atlas (TCGA) LUAD datasets to discover novel drivers from long noncoding RNAs. We further used zebrafish models to validate the biological function of candidates in vivo. The full length of FAM83H-AS1 was obtained by rapid amplification of the cDNA ends assay. RNA pull-down, RNA immunoprecipitation, quantitative mass spectrometry, and RNA sequencing assays were conducted to explore the potential mechanisms. Additionally, we used CRISPR interference (CRISPRi) method and patient-derived tumor xenograft (PDTX) model to evaluate the therapeutic potential of targeting FAM83H-AS1. RESULTS: The results suggest that FAM83H-AS1 is a potential oncogenic driver due to chromosome 8q24 amplification. Upregulation of FAM83H-AS1 results in poor prognosis of LUAD patients in both Jiangsu Cancer Hospital (JSCH) and TCGA cohorts. Functional assays revealed that FAM83H-AS1 promotes malignant progression and inhibits apoptosis. Mechanistically, FAM83H-AS1 binds HNRNPK to enhance the translation of antiapoptotic oncogenes RAB8B and RAB14. Experiments using CRISPRi-mediated xenografts and PDTX models indicated that targeting FAM83H-AS1 inhibited LUAD progression in vivo. CONCLUSIONS: Our work demonstrates that FAM83H-AS1 is a noncoding oncogenic driver that inhibits LUAD apoptosis via the FAM83H-AS1-HNRNPK-RAB8B/RAB14 axis, which highlights the importance and potential roles that FAM83H-AS1 may serve as a novel therapeutic target for LUAD.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Oncogenes , Proteínas/metabolismo , RNA não Traduzido/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Animais , Apoptose , Linhagem Celular Tumoral , Humanos , Imunoprecipitação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Oncogenes/genética , Proteínas/genética , Peixe-Zebra/embriologia
12.
Cell Death Dis ; 12(5): 424, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931593

RESUMO

Little is known about noncoding tumor suppressor genes. An effective way to identify these genes is by analyzing somatic copy number variation (CNV)-related noncoding genes. By integrated bioinformatics analyses of differentially expressed long noncoding RNAs (lncRNAs) and arm-level CNVs in lung adenocarcinoma (LUAD), we identified a potential antitumor gene, MIR99AHG, encoding lncRNA MIR99AHG as well as a miR-99a/let-7c/miR-125b2 cluster on chromosome 21q. All four of these transcripts were downregulated in LUAD tissues partly due to the copy number deletion of the MIR99AHG gene. Both MIR99AHG and miR-99a expression was positively correlated with the survival of LUAD patients. MIR99AHG suppressed proliferation and metastasis and promoted autophagy both in vitro and in vivo. Mechanistically, the interaction between MIR99AHG and ANXA2 could accelerate the ANXA2-induced ATG16L+ vesicle biogenesis, thus promoting phagophore assembly. Additionally, miR-99a targeted a well-known autophagy suppressor, mammalian target of rapamycin (mTOR), thereby synergistically promoting autophagy and postponing LUAD progression with MIR99AHG. In summary, MIR99AHG emerges as a noncoding tumor suppressor gene in LUAD, providing a new strategy for antitumor therapy.


Assuntos
Adenocarcinoma de Pulmão/genética , Genes Supressores de Tumor , Neoplasias Pulmonares/genética , MicroRNAs/genética , Adenocarcinoma de Pulmão/patologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus
13.
Biomark Res ; 8(1): 64, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33292666

RESUMO

Cancer-associated fibroblasts (CAFs) are the key component of tumor stromal. High heterogeneity of CAFs reflects in their origin, phenotype and function. Biological function which can be suggested by biomarkers of distinct CAF subgroups may be different, even opposite, just like water and fire. Identifying CAF subpopulations expressing different biomarkers and reconciling the relationship of the "water and fire" among distinct CAF subsets may be a breakthrough in tumor therapy. Herein, we briefly summarize the biomarkers commonly used or newly identified for distinct CAFs in terms of their features and potential clinical benefits.

14.
Cell Death Dis ; 11(5): 356, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393760

RESUMO

Circular RNAs (circRNAs), non-coding RNAs generated by precursor mRNA back-splicing of exons, have been reported to fulfill multiple roles in cancer. However, the role of quite a lot circRNAs in colorectal cancer (CRC) remains mostly unknown. Herein, we explored the expression profiles of circRNAs in 5 paired samples of CRC patients by microarray and noted a circRNA, hsa_circ_0005615 (circ5615), was significantly upregulated in CRC tissues. Circ5615 was derived from exon 2 of NFATC3 and its upregulation was tightly correlated with higher T stage and poor prognosis in CRC patients. Studies in vitro and in vivo demonstrated that knockdown of circ5615 in cancer cells inhibited proliferation and cell cycle acceleration, while overexpression promoted malignant phenotypes. Mechanistically, RNA immunoprecipitation, biotin-coupled probe pull-down and luciferase reporter assays revealed circ5615 effectively bound to miR-149-5p and might play a role like miR-149-5p sponge. Additionally, tankyrase (TNKS), regulator of ß-catenin stabilization, was identified as circ5615 downstream and the potential miR-149-5p targets by RNA-seq and bioinformatics analysis. We further verified the upregulation of ß-catenin and cyclin D1 induced by circ5615. Our results indicated that circ5615 exerted oncogenic function as competing endogenous RNA (ceRNA) of miR-149-5p to release TNKS and activated Wnt/ß-catenin pathway.


Assuntos
Neoplasias Colorretais/enzimologia , RNA Circular/metabolismo , Tanquirases/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ciclina D1/genética , Ciclina D1/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Tanquirases/genética , Carga Tumoral , Regulação para Cima , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
15.
Oncogenesis ; 9(3): 34, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165621

RESUMO

The underlying mechanisms of long non-coding RNAs (lncRNA) participating in the progression of lung cancers are largely unknown. We found a novel lncRNA, PIK3CD antisense RNA 2 (PIK3CD-AS2), that contributes to lung adenocarcinoma (LUAD) progression. The expression characteristics of PIK3CD-AS2 in LUAD were analyzed using microarray expression profile, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, and validated in 92 paired LUAD tissues by chromogenic in situ hybridization. Our data confirmed that PIK3CD-AS2 expression is a crucial regulator of LUAD progression and associated with shorter patient survival. In vitro studies showed that PIK3CD-AS2 increased cell growth and slowed apoptosis in p53wt cells but not in p53null cells. Mechanically, it is demonstrated that PIK3CD-AS2 bound to and maintained the stability of Y-box binding protein 1 (YBX1), a potent destabilizer of p53, by impeding its ubiquitination and degradation. Downexpression of YBX1 reversed PIK3CD-AS2-mediated inhibition of p53 signaling. Additionally, the therapeutic effect evaluation of a locked nuclear acid (LNA) specifically targeting PIK3CD-AS2 showed an anti-tumor activity in mice with A549 cells xenograft and p53 wild-type LUAD patient-derived tumor xenograft (PDTX) model. Clinically, the high expression of PIK3CD-AS2 showed a poor disease-free survival in p53 wild-type patients in TCGA database. Our findings suggest that PIK3CD-AS2 regulates LUAD progression and elucidate a new PIK3CD-AS2/YBX1/p53 signaling axis, providing a potential lncRNA-directed therapeutic strategy especially in p53 wild-type LUAD patients.

16.
J Hematol Oncol ; 12(1): 86, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462327

RESUMO

Among all the stromal cells that present in the tumor microenvironment, cancer-associated fibroblasts (CAFs) are one of the most abundant and critical components of the tumor mesenchyme, which not only provide physical support for tumor cells but also play a key role in promoting and retarding tumorigenesis in a context-dependent manner. CAFs have also been involved in the modulation of many components of the immune system, and recent studies have revealed their roles in immune evasion and poor responses to cancer immunotherapy. In this review, we describe our current understanding of the tumorigenic significance, origin, and heterogeneity of CAFs, as well as the roles of different CAFs subtypes in distinct immune cell types. More importantly, we highlight potential therapeutic strategies that target CAFs to unleash the immune system against the tumor.


Assuntos
Fibroblastos Associados a Câncer/imunologia , Imunoterapia/métodos , Fibroblastos Associados a Câncer/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA