Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 122(1): 168-179, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36352784

RESUMO

The functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR's function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E. coli membranes and synthetic liposomes. Compared with the monomers, the photocycle kinetics of PR oligomers is ∼2 and ∼4.5 times slower for transitions between the K and M and the M and N photointermediates, respectively, indicating that oligomerization significantly slows PR's rate of proton transport in liposomes. In contrast, the apparent pKa of the key proton acceptor residue D97 (pKaD97) of liposome-embedded PR persists at 6.2-6.6, regardless of cross-protomer modulation of D97, suggesting that the liposome environment helps maintain PR's functional activity at neutral pH. By comparison, when extracted directly from E. coli membranes into styrene-maleic acid lipid particles, the pKaD97 of monomer-enriched E50Q PR drastically increases to 8.9, implying that there is a very low active PR population at neutral pH to engage in PR's photocycle. These findings demonstrate that oligomerization impacts PR's photocycle kinetics, while lipid-based membrane mimetics strongly affect PR's active population via different mechanisms.


Assuntos
Escherichia coli , Lipossomos , Prótons , Rodopsinas Microbianas/química , Lipídeos
2.
Biophys J ; 118(8): 1838-1849, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32197061

RESUMO

The protonation state of embedded charged residues in transmembrane proteins (TMPs) can control the onset of protein function. It is understood that interactions between an embedded charged residue and other charged or polar residues in the moiety would influence its pKa, but how the surrounding environment in which the TMP resides affects the pKa of these residues is unclear. Proteorhodopsin (PR), a light-responsive proton pump from marine bacteria, was used as a model to examine externally accessible factors that tune the pKa of its embedded charged residue, specifically its primary proton acceptor D97. The pKa of D97 was compared between PR reconstituted in liposomes with different net headgroup charges and equilibrated in buffer with different ion concentrations. For PR reconstituted in net positively charged compared to net negatively charged liposomes in low-salt buffer solutions, a drop of the apparent pKa from 7.6 to 5.6 was observed, whereas intrinsic pKa modeled with surface pH calculated from Gouy-Chapman predictions found an opposite trend for the pKa change, suggesting that surface pH does not account for the main changes observed in the apparent pKa. This difference in the pKa of D97 observed from PR reconstituted in oppositely charged liposome environments disappeared when the NaCl concentration was increased to 150 mM. We suggest that protein-intrinsic structural properties must play a role in adjusting the local microenvironment around D97 to affect its pKa, as corroborated with observations of changes in protein side-chain and hydration dynamics around the E-F loop of PR. Understanding the effect of externally controllable factors in tuning the pKa of TMP-embedded charged residues is important for bioengineering and biomedical applications relying on TMP systems, in which the onset of functions can be controlled by the protonation state of embedded residues.


Assuntos
Prótons , Rodopsinas Microbianas , Concentração de Íons de Hidrogênio , Eletricidade Estática
3.
Langmuir ; 32(27): 6991-9, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27218880

RESUMO

Phospholipase A2 (PLA2) is a peripheral membrane protein that can hydrolyze phospholipids to produce lysolipids and fatty acids. It has been found to play crucial roles in various cellular processes and is thought as a potential candidate for triggering drug release from liposomes for medical treatment. Here, we directly observed that PLA2 hydrolysis reaction can induce the formation of PLA2-binding domains at lipid bilayer interface and found that the formation was significantly influenced by the fluidity of the lipid bilayer. We prepared supported lipid bilayers (SLBs) with various molar ratios of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) to adjust the reactivity and fluidity of the lipid bilayers. A significant amount of the PLA2-induced domains was observed in mixtures of DPPC and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) but not in either pure DPPC or pure DOPC bilayer, which might be the reason that previous studies rarely observed these domains in lipid bilayer systems. The fluorescently labeled PLA2 experiment showed that newly formed domains acted as binding templates for PLA2. The AFM result showed that the induced domain has stepwise plateau structure, suggesting that PLA2 hydrolysis products may align as bilayers and accumulate layer by layer on the support, and the hydrophobic acyl chains at the side of the layer structure may be exposed to the outside aqueous environment. The introduced hydrophobic region could have hydrophobic interactions with proteins and therefore can attract the binding of not only PLA2 but also other types of proteins such as proteoglycans and streptavidin. The results suggest that the formation of PLA2-induced domains may convert part of a zwitterionic nonsticky lipid membrane to a site where biomolecules can nonspecifically bind.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Venenos de Abelha/química , Proteínas de Insetos/química , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Fosfatidilcolinas/química , Fosfolipases A2/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Abelhas/enzimologia
4.
bioRxiv ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39185239

RESUMO

Hyperphosphorylation of the protein tau is one of the biomarkers of neurodegenerative diseases in the category of tauopathies. However, the molecular level, mechanistic, role of this common post-translational modification (PTM) in enhancing or reducing the aggregation propensity of tau is unclear, especially considering that combinatorial phosphorylation of multiple sites can have complex, non-additive, effects on tau protein aggregation. Since tau proteins stack in register and parallel to elongate into pathological fibrils, phosphoryl groups from adjacent tau strands with 4.8 Å separation must find an energetically favorable spatial arrangement. At first glance, this appears to be an unfavorable configuration due to the proximity of negative charges between phosphate groups from adjacent neighboring tau fibrils. However, this study tests a counterhypothesis that phosphoryl groups within the fibril core-forming segments favorably assemble into highly ordered, hydrogen-bonded, one-dimensionally extended wires under biologically relevant conditions. We selected two phosphorylation sites associated with neurodegeneration, serine 305 (S305p) and tyrosine 310 (Y310p), on a model tau peptide jR2R3-P301L (tau295-313) spanning the R2/R3 splice junction of tau, that readily aggregate into a fibril with characteristics of a seed-competent mini prion. Using multiple quantum spin counting (MQ-SC) by 31P solid-state NMR of phosphorylated jR2R3-P301L tau peptide fibrils, enhanced by dynamic nuclear polarization, we find that at least six phosphorous spins must neatly arrange in 1D within fibrils or in 2D within a protofibril to yield the experimentally observed MQ-coherence orders of four. We found that S305p stabilizes the tau fibrils and leads to more seeding-competent fibrils compared to jR2R3 P301L or Y310p. This study introduces a new concept that phosphorylation of residues within a core forming tau segment can mechanically facilitate fibril registry and stability due a hitherto unrecognized role of phosphoryl groups to form highly ordered, extended, 1D wires that stabilize pathological tau fibrils.

5.
Lab Chip ; 15(1): 86-93, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25316602

RESUMO

Supported lipid bilayers (SLBs) have been used for various biosensing applications. The bilayer structure enables embedded lipid membrane species to maintain their native orientation, and the two-dimensional fluidity is crucial for numerous biomolecular interactions to occur. The platform integrated with a microfluidic device for reagent transport and exchange has great potential to be applied with surface analytical tools. However, SLBs can easily be destroyed by air bubbles during assay reagent transport and exchange. Here, we created a patterned obstacle grating structured surface in a microfluidic channel to protect SLBs from being destroyed by air bubbles. Unlike all of the previous approaches using chemical modification or adding protection layers to strengthen lipid bilayers, the uniqueness of this approach is that it uses the patterned obstacles to physically trap water above the bilayers to prevent the air-water interface from directly coming into contact with and peeling the bilayers. We showed that our platform with certain grating geometry criteria can provide promising protection to SLBs from air bubbles. The required obstacle distance was found to decrease when we increased the air-bubble movement speed. In addition, the interaction assay results from streptavidin and biotinylated lipids in the confined SLBs suggested that receptors at the SLBs retained the interaction ability after air-bubble treatment. The results showed that the developed SLB platform can preserve both high membrane fluidity and high accessibility to the outside environment, which have never been simultaneously achieved before. Incorporating the built platforms with some surface analytical tools could open the bottleneck of building highly robust in vitro cell-membrane-related bioassays.


Assuntos
Bicamadas Lipídicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Ar , Desenho de Equipamento , Fosfatidilcolinas
6.
ACS Appl Mater Interfaces ; 6(9): 6378-83, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24758306

RESUMO

Supported lipid bilayer platforms have been used for various biological applications. However, the lipid bilayers easily delaminate and lose their natural structure after being exposed to an air-water interface. In this study, for the first time, we demonstrated that physical confinement can be used instead of chemical modifications to create air-stable membranes. Physical confinement was generated by the obstacle network induced by a peripheral enzyme, phospholipase A2. The enzyme and reacted lipids could be washed away from the obstacle network, which was detergent-resistant and strongly bonded to the solid support. On the basis of these properties, the obstacle framework on the solid support was reusable and lipid bilayers with the desired composition could be refilled and formed in the region confined by the obstacle framework. The results of fluorescence recovery after photobleaching (FRAP) indicate that the diffusivities of the lipid bilayers before drying and after rehydration were comparable, indicating the air stability of the physically confined membrane. In addition, we observed that the obstacles could trap a thin layer of water after the air-water interface passed through the lipid bilayer. Because the obstacles were demonstrated to be several times higher than a typical lipid membrane on a support, the obstacles may act as container walls, which can trap water above the lipid membrane. The water layer may have prevented the air-water interface from directly contacting the lipid membrane and, therefore, buffered the interfacial force, which could cause membrane delamination. The results suggest the possibility of using physical confinement to create air-stable membranes without changing local membrane rigidity or covering the membrane with protecting molecules.


Assuntos
Ar , Bicamadas Lipídicas , Fosfolipases A2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA