Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Am J Physiol Cell Physiol ; 326(3): C978-C989, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314722

RESUMO

Sleep deprivation (SD) is widely acknowledged as a significant risk factor for cognitive impairment. In this study, intraperitoneal caffeine administration significantly ameliorated the learning and memory (L/M) deficits induced by SD and reduced aggressive behaviors in adult zebrafish. SD led to a reduction in protein kinase A (PKA) phosphorylation, phosphorylated-cAMP response element-binding protein (p-CREB), and c-Fos expression in zebrafish brain. Notably, these alterations were effectively reversed by caffeine. In addition, caffeine mitigated neuroinflammation induced by SD, as evident from suppression of the SD-mediated increase in glial fibrillary acidic protein (GFAP) and nuclear factor-κB (NF-κB) activation. Caffeine restored normal O-GlcNAcylation and O-GlcNAc transferase (OGT) levels while reversing the increased expression of O-GlcNAcase (OGA) in zebrafish brain after SD. Intriguingly, rolipram, a selective phosphodiesterase 4 (PDE4) inhibitor, effectively mitigated cognitive deficits, restored p-CREB and c-Fos levels, and attenuated the increase in GFAP in brain induced by SD. In addition, rolipram reversed the decrease in O-GlcNAcylation and OGT expression as well as elevation of OGA expression following SD. Treatment with H89, a PKA inhibitor, significantly impaired the L/M functions of zebrafish compared with the control group, inducing a decrease in O-GlcNAcylation and OGT expression and, conversely, an increase in OGA expression. The H89-induced changes in O-GlcNAc cycling and L/M dysfunction were effectively reversed by glucosamine treatment. H89 suppressed, whereas caffeine and rolipram promoted O-GlcNAc cycling in Neuro2a cells. Our collective findings underscore the interplay between PKA signaling and O-GlcNAc cycling in the regulation of cognitive function in the brain, offering potential therapeutic targets for cognitive deficits associated with SD.NEW & NOTEWORTHY Our observation highlights the intricate interplay between cAMP/PKA signaling and O-GlcNAc cycling, unveiling a novel mechanism that potentially governs the regulation of learning and memory functions. The dynamic interplay between these two pathways provides a novel and nuanced perspective on the molecular foundation of learning and memory regulation. These insights open avenues for the development of targeted interventions to treat conditions that impact cognitive function, including SD.


Assuntos
Disfunção Cognitiva , Isoquinolinas , Privação do Sono , Sulfonamidas , Animais , Privação do Sono/tratamento farmacológico , Peixe-Zebra/metabolismo , Cafeína/farmacologia , Rolipram , Acetilglucosamina/metabolismo , Processamento de Proteína Pós-Traducional , Cognição , Disfunção Cognitiva/tratamento farmacológico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo
2.
Am J Physiol Cell Physiol ; 327(2): C380-C386, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953842

RESUMO

Cell surface receptors play crucial roles in cellular responses to extracellular ligands, helping to modulate the functions of a cell based on information coming from outside the cell. Syndecan refers to a family of cell adhesion receptors that regulate both extracellular and cytosolic events. Alteration of syndecan expression disrupts regulatory mechanisms in a cell type-specific fashion, often leading to serious diseases, notably cancer. Given the multifaceted functions and distinct tissue distributions of syndecan, it will be important to unravel the gene-level intricacies of syndecan expression and thereby further understand its involvement in various carcinogenic processes. Although accumulating evidence indicates that the protein expression patterns of syndecan family members are significantly altered in cancer cells, the underlying gene-level mechanisms remain largely unknown. This review endeavors to explore syndecan gene expression levels across different cancer types by scrutinizing extensive cancer genome datasets using tools such as cBioPortal. Our analysis unveils that somatic mutations in SDC genes are rare occurrences, whereas copy number alterations are frequently observed across diverse cancers, particularly in SDC2 and SDC4. Notably, amplifications of SDC2 and SDC4 correlate with heightened metastatic potential and dismal prognosis. This underscores the recurrent nature of SDC2 and SDC4 amplifications during carcinogenesis and sheds light on their role in promoting cancer activity through augmented protein expression. The identification of these amplifications not only enriches our understanding of carcinogenic mechanisms but also hints at the potential therapeutic avenue of targeting SDC2 and SDC4 to curb cancer cell proliferation and metastasis.


Assuntos
Amplificação de Genes , Humanos , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Animais , Sindecana-4/genética , Sindecana-4/metabolismo , Sindecanas/genética , Sindecanas/metabolismo , Carcinoma/genética , Carcinoma/patologia , Carcinoma/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
3.
J Neuroinflammation ; 21(1): 180, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044290

RESUMO

This study investigated the role of O-GlcNAc cycling in Alzheimer's disease-related changes in brain pathophysiology induced by chronic REM sleep deprivation (CSD) in mice. CSD increased amyloid beta (Aß) and p-Tau accumulation and impaired learning and memory (L/M) function. CSD decreased dendritic length and spine density. CSD also increased the intensity of postsynaptic density protein-95 (PSD-95) staining. All of these Alzheimer's disease (AD) pathogenic changes were effectively reversed through glucosamine (GlcN) treatment by enhancing O-GlcNAcylation. Interestingly, the lelvel of O-GlcNAcylated-Tau (O-Tau) exhibited an opposite trend compared to p-Tau, as it was elevated by CSD and suppressed by GlcN treatment. CSD increased neuroinflammation, as indicated by elevated levels of glial fibrillary acidic protein and IBA-1-positive glial cells in the brain, which were suppressed by GlcN treatment. CSD promoted the phosphorylation of GSK3ß and led to an upregulation in the expression of endoplasmic reticulum (ER) stress regulatory proteins and genes. These alterations were effectively suppressed by GlcN treatment. Minocycline not only suppressed neuroinflammation induced by CSD, but it also rescued the decrease in O-GlcNAc levels caused by CSD. Minocycline also reduced AD neuropathy without affecting CSD-induced ER stress. Notably, overexpressing O-GlcNAc transferase in the dentate gyrus region of the mouse brain rescued CSD-induced cognitive dysfunction, neuropathy, neuroinflammation, and ER stress responses. Collectively, our findings reveal that dysregulation of O-GlcNAc cycling underlies CSD-induced AD pathology and demonstrate that restoration of OGlcNAcylation protects against CSD-induced neurodegeneration.


Assuntos
Doença de Alzheimer , Encéfalo , Privação do Sono , Animais , Camundongos , Privação do Sono/metabolismo , Privação do Sono/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas tau/metabolismo , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Sono REM/fisiologia , Peptídeos beta-Amiloides/metabolismo
4.
J Pineal Res ; 76(5): e13001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092800

RESUMO

This study explores the 24-h rhythmic cycle of protein O-GlcNAcylation within the brain and highlights its crucial role in regulating the circadian cycle and neuronal function based on zebrafish as an animal model. In our experiments, disruption of the circadian rhythm, achieved through inversion of the light-dark cycle or daytime melatonin treatment, not only impaired the rhythmic changes of O-GlcNAcylation along with altering expression patterns of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in zebrafish brain but also significantly impeded learning and memory function. In particular, circadian disruption affected rhythmic expression of protein O-GlcNAcylation and OGT in the nuclear fraction. Notably, the circadian cycle induces rhythmic alterations in O-GlcNAcylation of H2B histone protein that correspond to changes in H3 trimethylation. Disruption of the cycle interfered with these periodic histone code alterations. Pharmacological inhibition of OGT with OSMI-1 disrupted the wake-sleep patterns of zebrafish without affecting expression of circadian rhythm-regulating genes. OSMI-1 inhibited the expression of c-fos, bdnf, and calm1, key genes associated with brain function and synaptic plasticity, and decreased the binding of O-GlcNAcylated H2B and OGT to promoter regions of these genes. The collective findings support the potential involvement of circadian cycling of the O-GlcNAc histone code in regulating synaptic plasticity and brain function. Overall, data from this study provide evidence that protein O-GlcNAcylation serves as a pivotal posttranslational mechanism integrating circadian signals and neuronal function to regulate rhythmic physiology.


Assuntos
Ritmo Circadiano , N-Acetilglucosaminiltransferases , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Ritmo Circadiano/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Cognição/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Luz , Encéfalo/metabolismo
5.
Am J Physiol Cell Physiol ; 325(4): C981-C998, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602414

RESUMO

Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by ß-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.


Assuntos
Acetilglucosamina , Vias Biossintéticas , Acetilglucosamina/metabolismo , Hexosaminas/metabolismo , Proteínas/metabolismo , Glucose/metabolismo , Encéfalo/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional
6.
J Neuroinflammation ; 20(1): 257, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946213

RESUMO

This study investigated chronic and repeated sleep deprivation (RSD)-induced neuronal changes in hexosamine biosynthetic pathway/O-linked N-acetylglucosamine (HBP/O-GlcNAc) cycling of glucose metabolism and further explored the role of altered O-GlcNAc cycling in promoting neurodegeneration using an adult zebrafish model. RSD-triggered degenerative changes in the brain led to impairment of memory, neuroinflammation and amyloid beta (Aß) accumulation. Metabolite profiling of RSD zebrafish brain revealed a significant decrease in glucose, indicating a potential association between RSD-induced neurodegeneration and dysregulated glucose metabolism. While RSD had no impact on overall O-GlcNAcylation levels in the hippocampus region, changes were observed in two O-GlcNAcylation-regulating enzymes, specifically, a decrease in O-GlcNAc transferase (OGT) and an increase in O-GlcNAcase (OGA). Glucosamine (GlcN) treatment induced an increase in O-GlcNAcylation and recovery of the OGT level that was decreased in the RSD group. In addition, GlcN reversed cognitive impairment by RSD. GlcN reduced neuroinflammation and attenuated Aß accumulation induced by RSD. Repeated treatment of zebrafish with diazo-5-oxo-l-norleucine (DON), an inhibitor of HBP metabolism, resulted in cognitive dysfunction, neuroinflammation and Aß accumulation, similar to the effects of RSD. The pathological changes induced by DON were restored to normal upon treatment with GlcN. Both the SD and DON-treated groups exhibited a common decrease in glutamate and γ-aminobutyric acid compared to the control group. Overexpression of OGT in zebrafish brain rescued RSD-induced neuronal dysfunction and neurodegeneration. RSD induced a decrease in O-GlcNAcylation of amyloid precursor protein and increase in ß-secretase activity, which were reversed by GlcN treatment. Based on the collective findings, we propose that dysregulation of HBP and O-GlcNAc cycling in brain plays a crucial role in RSD-mediated progression of neurodegeneration and Alzheimer's disease pathogenesis. Targeting of this pathway may, therefore, offer an effective regulatory approach for treatment of sleep-associated neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/patologia , Hexosaminas , Peixe-Zebra/metabolismo , Privação do Sono , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias , Vias Biossintéticas , Glucose
7.
FASEB J ; 34(1): 853-864, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914627

RESUMO

Sleep is an evolutionarily conserved physiological process implicated in the consolidation of learning and memory (L/M). Here, we report that sleep deprivation (SD)-induced cognitive deficits in zebrafish are mediated through reduction in O-GlcNAcylation of brain. Microarray-based gene expression profiling of zebrafish brain demonstrated significant changes in genes involved in metabolism by SD or fear conditioning (FC), compared to the control group. In particular, it was observed that a marked decrease in the number of genes involved in carboxylic acid and organic acid metabolic processes in the brains of SD group compared to control group. SD downregulated O-GlcNAc transferase (OGT) and O-GlcNAcylation, while the expression of O-GlcNAcase was upregulated. FC activated protein kinase A (PKA) and phosphorylated cAMP response element binding protein (p-CREB), an effect that was greatly inhibited by SD. Moreover, FC upregulated expressions of OGT and increased O-GlcNAcylation in the brains of normal but not SD zebrafish. Intriguingly, upregulation of O-GlcNAcylation by glucosamine restored defects in L/M functions and PKA/p-CREB activity in SD group. Our findings highlight the O-GlcNAcylation changes in the brain during the L/M process and further provide a foundation for future studies seeking the molecular and biochemical mechanisms by which HBP of glucose metabolism affects cognitive function.


Assuntos
Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Privação do Sono/fisiopatologia , beta-N-Acetil-Hexosaminidases/metabolismo , Acetilglucosamina/metabolismo , Animais , Encéfalo/fisiopatologia , Cognição/fisiologia , Glucosamina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Peixe-Zebra/metabolismo
8.
J Biol Chem ; 294(2): 608-622, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30455348

RESUMO

The aim of the current study was to investigate the effects of glucosamine (GlcN) on septic lethality and sepsis-induced inflammation using animal models of mice and zebrafish. GlcN pretreatment improved survival in the cecal ligation and puncture (CLP)-induced sepsis mouse model and attenuated lipopolysaccharide (LPS)-induced septic lung injury and systemic inflammation. GlcN suppressed LPS-induced M1-specific but not M2-specific gene expression. Furthermore, increased expressions of inflammatory genes in visceral tissue of LPS-injected zebrafish were suppressed by GlcN. GlcN suppressed LPS-induced activation of mitogen-activated protein kinase (MAPK) and NF-κB in lung tissue. LPS triggered a reduction in O-GlcNAc levels in nucleocytoplasmic proteins of lung, liver, and spleen after 1 day, which returned to normal levels at day 3. GlcN inhibited LPS-induced O-GlcNAc down-regulation in mouse lung and visceral tissue of zebrafish. Furthermore, the O-GlcNAcase (OGA) level was increased by LPS, which were suppressed by GlcN in mouse and zebrafish. OGA inhibitors suppressed LPS-induced expression of inflammatory genes in RAW264.7 cells and the visceral tissue of zebrafish. Stable knockdown of Oga via short hairpin RNA led to increased inducible nitric oxide synthase (iNOS) expression in response to LPS with or without GlcN in RAW264.7 cells. Overall, our results demonstrate a protective effect of GlcN on sepsis potentially through modulation of O-GlcNAcylation of nucleocytoplasmic proteins.


Assuntos
Glucosamina/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Sepse/complicações , Sepse/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Inflamação/patologia , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/efeitos dos fármacos , Células RAW 264.7 , Sepse/patologia , Peixe-Zebra
9.
Biochem Biophys Res Commun ; 515(4): 565-571, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31178135

RESUMO

In the present study, we synthesized and evaluated the anti-inflammatory effects of the two component hybrids, caffeic acid (CA)-ferulic acid (FA), FA-Tryptamine (Trm), CA-Piperonyl Triazol (PT) and FA-PT. Of these five hybrids, CA-FA had the most potent inhibitory effect on butyrylcholinesterase (BuChE) activity. The CA containing hybrids, CA-FA, CA-Trm, and CA-PT, dose-dependently inhibited LPS-induced nitric oxide (NO) generation in BV2 cells, whereas FA-PT, FA-Trm, CA, FA, Trm, and PT did not. Although CA-FA, CA-Trm and CA-PT had similar inhibitory effects on LPS-induced NO generation, CA-FA best protected BV2 cells from LPS-induced cell death. CA-FA, but not CA or FA, dose-dependently inhibited LPS-induced up-regulations of NO synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in BV2 and RAW264.7 cells. Furthermore, CA-FA inhibited LPS-induced iNOS, COX-2, interleukin-6, and interleukin-1ß mRNA expressions in BV2 cells. CA-FA also inhibited the LPS-induced phosphorylations of STAT3, Akt, and IκB and selectively inhibited LPS-induced NF-κB activation. Overall, our data suggest that CA-FA has BuChE inhibitory effects and down-regulates inflammatory responses by inhibiting NF-κB, which indicates CA-FA be viewed as a potential therapeutic agent for the treatment of inflammatory diseases of the peripheral system and central nervous systems.


Assuntos
Ácidos Cafeicos/química , Ácidos Cumáricos/química , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Butirilcolinesterase/metabolismo , Colinesterases/metabolismo , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta à Radiação , Inflamação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Fosforilação , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Triptaminas/química
10.
J Biol Chem ; 292(5): 1724-1736, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27927986

RESUMO

We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucosamina/farmacologia , Glucose/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/enzimologia , Óxido Nítrico Sintase Tipo II/biossíntese , Animais , Ciclo-Oxigenase 2/biossíntese , Dactinomicina/farmacologia , Interleucina-6/metabolismo , Macrófagos/patologia , Camundongos , Células RAW 264.7 , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
11.
J Biol Chem ; 290(9): 5772-82, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25572401

RESUMO

The syndecans are a type of cell surface adhesion receptor that initiates intracellular signaling events through receptor clustering mediated by their highly conserved transmembrane domains (TMDs). However, the exact function of the syndecan TMD is not yet fully understood. Here, we investigated the specific regulatory role of the syndecan-2 TMD. We found that syndecan-2 mutants in which the TMD had been replaced with that of syndecan-4 were defective in syndecan-2-mediated functions, suggesting that the TMD of syndecan-2 plays one or more specific roles. Interestingly, syndecan-2 has a stronger tendency to form sodium dodecyl sulfate (SDS)-resistant homodimers than syndecan-4. Our structural studies showed that a unique phenylalanine residue (Phe(167)) enables an additional molecular interaction between the TMDs of the syndecan-2 homodimer. The presence of Phe(167) was correlated with a higher tendency toward oligomerization, and its replacement with isoleucine significantly reduced the SDS-resistant dimer formation and cellular functions of syndecan-2 (e.g. cell migration). Conversely, replacement of isoleucine with phenylalanine at this position in the syndecan-4 TMD rescued the defects observed in a mutant syndecan-2 harboring the syndecan-4 TMD. Taken together, these data suggest that Phe(167) in the TMD of syndecan-2 endows the protein with specific functions. Our work offers new insights into the signaling mediated by the TMD of syndecan family members.


Assuntos
Isoleucina/genética , Mutação de Sentido Incorreto , Fenilalanina/genética , Sindecana-2/genética , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células HCT116 , Células HEK293 , Humanos , Immunoblotting , Isoleucina/química , Isoleucina/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Fenilalanina/química , Fenilalanina/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/metabolismo , Sindecana-2/química , Sindecana-2/metabolismo , Sindecana-4/química , Sindecana-4/genética , Sindecana-4/metabolismo
12.
J Cell Biochem ; 117(1): 39-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26053972

RESUMO

We investigated the effects of exogenous sodium pyruvate (SP) on adipocyte differentiation, lipid accumulation, and the mRNA expression levels of adipogenesis-related genes in 3T3-L1 pre-adipocytes. Differentiation of pre-adipocytes was induced by MDI (3-isobutyl-1-methylxanthine: IBMX, dexamethasone: DEX, and insulin), in the presence or absence of SP. Adipogenesis was stimulated by SP in a concentration-dependent manner. SP also induced the expression of genes encoding aP2, GLUT4, and adiponectin, but had no effect on cell proliferation. Exogenous glucose did not promote adipogenesis or lipid accumulation. 2-deoxy-D-glucose inhibited adipogenesis initiated by MDI, but failed to influence the effects of SP on adipogenesis, whereas 3-bromopyruvate inhibited adipogenesis regardless of whether SP was present. The pro-adipogenic properties of SP were limited to the early events of adipogenesis. To determine whether SP mimics the adipogenic action of dexamethasone or insulin, we examined the effects of SP on adipogenesis with combinations of IBMX, DEX, and insulin. SP did not improve incomplete lipid accumulation observed in cells grown under IBMX-, DEX-, or insulin-free conditions. Insulin-stimulated ERK1/2 phosphorylation was diminished by SP, while phosphorylation of Akt was increased, correlating with increased glucose uptake in response to insulin. We also observed that SP stimulated immediate early expression of C/EBPß and C/EBPδ. The PPARγ antagonist GW9662 inhibited adipogenesis. Our findings highlight the adipogenic function of exogenous SP by stimulating early events of adipogenesis.


Assuntos
Adipogenia/efeitos dos fármacos , Piruvatos/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Células 3T3-L1 , Adiponectina/metabolismo , Animais , Desoxiglucose/farmacologia , Dexametasona/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Camundongos , Transdução de Sinais/efeitos dos fármacos
13.
J Biol Chem ; 289(31): 21751-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24951591

RESUMO

Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake.


Assuntos
Moléculas de Adesão Celular/metabolismo , Queratinócitos/metabolismo , Melaninas/biossíntese , Tirosina/metabolismo , Animais , Sequência de Bases , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , RNA Interferente Pequeno/genética , alfa-MSH/metabolismo , Calinina
14.
J Neuropathol Exp Neurol ; 83(11): 927-938, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39150431

RESUMO

This study investigated the behavioral and molecular changes in the telencephalon following needle stab-induced injury in the optic tectum of adult zebrafish. At 3 days post-injury (dpi), there was noticeable structural damage to brain tissue and reduced neuronal proliferation in the telencephalon that persisted until 30 dpi. Neurobehavioral deficits observed at 3 dpi included decreased exploratory and social activities and impaired learning and memory (L/M) functions; all of these resolved by 7 dpi. The injury led to a reduction in telencephalic phosphorylated cAMP response element-binding protein and O-GlcNAcylation, both of which were restored by 30 dpi. There was an increase in GFAP expression and nuclear translocation of NF-κB p65 at 3 dpi, which were not restored by 30 dpi. The injury caused decreased O-GlcNAc transferase and increased O-GlcNAcase levels at 3 dpi, normalizing by 30 dpi. Glucosamine (GlcN) treatment at 3 dpi significantly restored O-GlcNAcylation levels and L/M function, also reducing GFAP activation. Glucose treatment recovered L/M function by 7 dpi, but inhibition of the hexosamine biosynthetic pathway by 6-diazo-5-oxo-L-norleucine blocked this recovery. These findings suggest that the O-GlcNAc pathway is a potential therapeutic target for addressing L/M impairment following traumatic brain injury in zebrafish.


Assuntos
Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Glucosamina , Colículos Superiores , Peixe-Zebra , Animais , Glucosamina/farmacologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Colículos Superiores/efeitos dos fármacos , Colículos Superiores/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Fármacos Neuroprotetores/farmacologia
15.
BMB Rep ; 57(2): 92-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37964636

RESUMO

Elevated blood glucose is associated with an increased risk of atherosclerosis. Data from the current study showed that glucosamine (GlcN), a normal glucose metabolite of the hexosamine biosynthetic pathway (HBP), promoted lipid accumulation in RAW264.7 macrophage cells. Oleic acid- and lipopolysaccharide (LPS)-induced lipid accumulation was further enhanced by GlcN in RAW264.7 cells, although there was no a significant change in the rate of fatty acid uptake. GlcN increased acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), scavenger receptor class A, liver X receptor, and sterol regulatory elementbinding protein-1c (SREBP-1c) mRNA expression, and; conversely, suppressed ATP-binding cassette transporter A1 (ABCA-1) and ABCG-1 expression. Additionally, GlcN promoted O-GlcNAcylation of nuclear SREBP-1 but did not affect its DNA binding activity. GlcN stimulated phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Rapamycin, a mTOR-specific inhibitor, suppressed GlcN-induced lipid accumulation in RAW264.7 cells. The GlcN-mediated increase in ACC and FAS mRNA was suppressed, while the decrease in ABCA-1 and ABCG-1 by GlcN was not significantly altered by rapamycin. Together, our results highlight the importance of the mTOR signaling pathway in GlcN-induced macrophage lipid accumulation and further support a potential link between mTOR and HBP signaling in lipogenesis. [BMB Reports 2024; 57(2): 92-97].


Assuntos
Glucosamina , Transdução de Sinais , Animais , Camundongos , Glucosamina/farmacologia , Lipopolissacarídeos , Macrófagos , Células RAW 264.7 , RNA Mensageiro , Sirolimo , Serina-Treonina Quinases TOR , Fatores de Transcrição
16.
Cell Death Dis ; 15(4): 287, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654003

RESUMO

This study aimed to elucidate the role of O-GlcNAc cycling in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD)-like neurodegeneration and the underlying mechanisms. We observed dose-dependent downregulation of O-GlcNAcylation, accompanied by an increase in O-GlcNAcase following 6-OHDA treatment in both mouse brain and Neuro2a cells. Interestingly, elevating O-GlcNAcylation through glucosamine (GlcN) injection provided protection against PD pathogenesis induced by 6-OHDA. At the behavioral level, GlcN mitigated motor deficits induced by 6-OHDA, as determined using the pole, cylinder, and apomorphine rotation tests. Furthermore, GlcN attenuated 6-OHDA-induced neuroinflammation and mitochondrial dysfunction. Notably, augmented O-GlcNAcylation, achieved through O-GlcNAc transferase (OGT) overexpression in mouse brain, conferred protection against 6-OHDA-induced PD pathology, encompassing neuronal cell death, motor deficits, neuroinflammation, and mitochondrial dysfunction. These collective findings suggest that O-GlcNAcylation plays a crucial role in the normal functioning of dopamine neurons. Moreover, enhancing O-GlcNAcylation through genetic and pharmacological means could effectively ameliorate neurodegeneration and motor impairment in an animal model of PD. These results propose a potential strategy for safeguarding against the deterioration of dopamine neurons implicated in PD pathogenesis.


Assuntos
Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases , Oxidopamina , Doença de Parkinson , Animais , Oxidopamina/farmacologia , Camundongos , N-Acetilglucosaminiltransferases/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Masculino , Glucosamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , beta-N-Acetil-Hexosaminidases/metabolismo , Modelos Animais de Doenças
17.
Am J Physiol Cell Physiol ; 305(6): C601-8, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23824843

RESUMO

O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT), which catalyzes the addition of a single ß-N-GlcNAc unit to target proteins, has been shown to act as a transcriptional regulator. In the current study, we discovered that OGT exerted inhibitory effects on the LPS-driven activation of NF-κB and inducible nitric oxide synthase (iNOS). In response to LPS, OGT exhibited an increased interaction with the transcriptional corepressor mammalian Sin3A (mSin3A). Furthermore, mSin3A, histone deacetylase (HDAC)1, and HDAC2 displayed increased binding to the iNOS promoter in response to LPS. Treatment with GlcN, in contrast, inhibits LPS-induced inflammation and decreased LPS-mediated recruitment of OGT, mSin3A, and HDACs. LPS treatment also resulted in the hypo-O-GlcNAcylation of mSin3A, which was reversed by GlcN. When the effect of the HDAC inhibitor trichostatin A (TSA) on LPS- and/or GlcN-mediated iNOS protein/mRNA induction was investigated, the results revealed that TSA dose dependently enhanced iNOS expression in response to LPS and/or GlcN. In addition, histone acetyltransferases, p300, and cAMP response element-binding protein-binding protein (CBP) enhanced LPS- and/or GlcN-induced iNOS protein expression. These results collectively suggest that OGT inhibits LPS-driven NF-κB activation and subsequent iNOS transcription by modulating histone acetylation either directly or indirectly.


Assuntos
Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Proteínas Repressoras/metabolismo , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Células Cultivadas , Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/enzimologia , Camundongos , N-Acetilglucosaminiltransferases/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3 , Transcrição Gênica
18.
J Biol Chem ; 287(23): 19326-35, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22493442

RESUMO

The melanocortin 1 receptor (MC1R), a key regulator of melanogenesis, is known to control inflammation, acting in concert with the MC1R ligand α-melanocyte-stimulating hormone. Although cell migration is a key event in inflammation, few studies have addressed the function of MC1R in this context. Using highly motile melanoma cells, we found that the expression level of MC1R was associated with the extent of migration of mouse melanoma cells, suggesting that MC1R plays a functional role in controlling this migration. Overexpression of MC1R enhanced melanoma cell migration, whereas the opposite was true when MC1R levels were knocked down using small inhibitory RNAs. Interestingly, MC1R expression enhanced the synthesis of syndecan-2, a cell surface heparan sulfate proteoglycan known to be involved in melanoma cell migration. Knockdown of syndecan-2 expression decreased MC1R-mediated cell migration. Further, MC1R inhibited the activation of p38 MAPK, subsequently enhancing expression of sydnecan-2, in parallel with an increase in the extent of cell migration. Consistently, activation of p38 by H(2)O(2) inhibited syndecan-2 expression and cell migration, whereas inhibition of p38 activation enhanced syndecan-2 expression and cell migration. Finally, we found that α-melanocyte-stimulating hormone inhibited MC1R-mediated cell migration via activation of p38 and inhibition of syndecan-2 expression. Together, the data strongly suggest that MC1R regulates melanoma cell migration via inhibition of syndecan-2 expression.


Assuntos
Movimento Celular , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Sindecana-2/biossíntese , Animais , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/farmacologia , Melanoma/genética , Melanoma/patologia , Camundongos , Proteínas de Neoplasias/genética , Oxidantes/farmacologia , Receptor Tipo 1 de Melanocortina/genética , Sindecana-2/genética , alfa-MSH/genética , alfa-MSH/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
J Cell Sci ; 124(Pt 7): 1077-87, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21363891

RESUMO

Expression of carbonic anhydrase IX (CA9) was shown to be strongly involved in high incidences of metastasis and poor prognosis in various human tumors. In this study, we investigated the possible role for CA9 in tumor metastases in vitro, using a gene transfection tool in the human cervical carcinoma cell line C33A. Gene expression profiling of CA9-transfected cells (C33A/CA9) and vector-transfected cells (C33A/Mock) was investigated by DNA microarray. The biological functions of differentially expressed genes between the C33A/CA9 and C33A/Mock cells included cell growth, regulation of cell-cell and cell-extracellular matrix adhesion and cytoskeletal organization. Immunofluorescent stain and Matrigel culture showed cytoskeletal remodeling, disassembled focal adhesion, weakened cell-cell adhesion and increased motility in C33A/CA9 cells. These invasive and metastatic phenotypes were associated with Rho-GTPase-related epithelial-mesenchymal transition. Inhibition of the Rho/Rho kinase pathway by a ROCK inhibitor (Y27632) and si-Rho (short interference RNA against RhoA) showed that Rho-GTPase signaling was involved in cellular morphologic and migratory changes. The effect of CA9 on Rho-GTPase signaling was also confirmed by silencing CA9 expression. Our results suggest that CA9 overexpression induces weakening of cell adhesions and augmented cell motility by aberrant Rho-GTPase signal transduction. Our study shows an underlying mechanism of CA9-related enhanced metastatic potential of tumor cells.


Assuntos
Antígenos de Neoplasias/metabolismo , Anidrases Carbônicas/metabolismo , Movimento Celular , Metástase Neoplásica , Neoplasias/enzimologia , Neoplasias/fisiopatologia , Antígenos de Neoplasias/genética , Anidrase Carbônica IX , Anidrases Carbônicas/genética , Linhagem Celular Tumoral , Humanos , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
20.
Biochem Biophys Res Commun ; 431(3): 415-20, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23333331

RESUMO

The cell surface heparan sulfate proteoglycan, syndecan-2, is known to play an important role in the tumorigenic activity of colon cancer cells, but the function of its extracellular domain is not yet clear. Cell spreading assays showed that HCT116 human colon cancer cells attached and spread better on fibronectin compared to the other tested extracellular matrixes (ECMs). Notably, syndecan-2 overexpression enhanced the spreading of HCT116 cells on fibronectin, and the opposite effects were observed when syndecan-2 expression was reduced. In addition, an oligomerization-defective syndecan-2 mutant failed to increase cell-ECM interactions and adhesion-related syndecan-2 functions, including migration. Furthermore, analyses using a microfabricated post array detector system revealed that syndecan-2, but not the oligomerization-defective mutant, enhanced the interaction affinity of HCT116 cells on fibronectin. Taken together, these results suggest that the extracellular domain of syndecan-2 regulates the interaction of HCT116 human colon carcinoma cells with fibronectin.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Sindecana-2/metabolismo , Adesão Celular , Fibronectinas/metabolismo , Células HCT116 , Humanos , Multimerização Proteica , Estrutura Terciária de Proteína , Sindecana-2/química , Sindecana-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA