Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Erde ; 79(4)2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32020946

RESUMO

A coordinated mineralogical and oxygen isotopic study of four fine-grained calcium-, aluminum-rich inclusions (CAIs) from the ALHA77307 CO3.0 carbonaceous chondrite was conducted. Three of the inclusions studied, 05, 1-65, and 2-119, all have nodular structures that represent three major groups, melilite-rich, spinel-rich, and hibonite-rich, based on their primary core mineral assemblages. A condensation origin was inferred for these CAIs. However, the difference in their primary core mineralogy reflects unique nebular environments in which multiple gas-solid reactions occurred under disequilibrium conditions to form hibonite, spinel, and melilite with minor perovskite and Al,Ti-rich diopside. A common occurrence of a diopside rim on the CAIs records a widespread event that marks the end of their condensation as a result of isolation from a nebular gas. An exception is a rare inclusion 2-112 that contains euhedral spinel crystals embedded in melilite, suggesting this CAI had been re-melted. All of the fine-grained CAIs analyzed in ALHA77307 are uniformly 16O-rich with an average Δ17O value of ~-22 ± 5‰ (2σ), indicating no apparent correlation between their textures and oxygen isotopic compositions. We therefore conclude that a prevalent 16O-rich gas reservoir existed in a region of the solar nebula where CO3 fine-grained CAIs formed, initially by condensation and then later, some of them were reprocessed by melting event(s).

2.
Geochim Cosmochim Acta ; 269: 639-660, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32020947

RESUMO

We carried out a coordinated mineralogical and isotopic study of a Wark-Lovering (WL) rim on a Ca,Al-rich inclusion (CAI) from the reduced CV3 chondrite Vigarano. The outermost edge of the CAI mantle is mineralogically and texturally distinct compared to the underlying mantle that is composed of coarse, zoned melilite (Åk~10-60) grains. The mantle edge contains fine-grained gehlenite with hibonite and rare grossite that likely formed by rapid crystallization from a melt enriched in Ca and Al. These gehlenite and hibonite layers are surrounded by successive layers of spinel, zoned melilite (Åk~0-10), zoned diopside that grades outwards from Al,Ti-rich to Al,Ti-poor, and forsteritic olivine intergrown with diopside. These layered textures are indicative of sequential condensation of spinel, melilite, diopside, and forsterite onto hibonite. Anorthite occurs as a discontinuous layer that corrodes adjacent melilite and Al-diopside, and appears to have replaced them, probably even later than the forsterite layer formation. Based on these observations, we conclude that the WL rim formation was initiated by flash melting and extensive evaporation of the original inclusion edge, followed by subsequent gas-solid reactions under highly dynamic conditions. All the WL rim minerals are 16O-rich (Δ17O = ~-23‰), indicating their formation in an 16O-rich nebular reservoir. Our Al-Mg measurements of hibonite, spinel, and diopside from the WL rim, as well as spinel and Al,Ti-diopside in the core, define a single, well-correlated isochron with an inferred initial 26Al/27Al ratio of (4.94 ± 0.12) × 10-5. This indicates that the WL rim formed shortly after the host CAI. In contrast, the lack of 26Mg excesses in the WL rim anorthite suggest its later formation or later isotopic disturbance in the solar nebula, after 26Al had decayed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA