Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 30(12): 125301, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30602141

RESUMO

A cost-effective process for producing high-performance Ag-paste-based flexible transparent nanomesh electrodes (FTNEs) was developed by optimizing their linewidth, pitch, and height. These nanomesh electrodes, with a linewidth of several hundred nanometers and a pitch of 10-200 µm on a PET substrate, achieved wide ranges of transmittance (83.1%-98.8%) and sheet resistance (1.2-30.9 Ω/sq) and a figure of merit (992-1619) superior to those of indium tin oxide and silver nanowire (AgNW) electrodes. Our evaluation of their flexibility (testing up to 50 000 cycles) and their electromagnetic interference shielding effectiveness verifies the applicability of these FTNEs to various flexible optoelectronic devices.

2.
Small ; 14(13): e1703697, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29457352

RESUMO

The fine control of graphene doping levels over a wide energy range remains a challenging issue for the electronic applications of graphene. Here, the controllable doping of chemical vapor deposited graphene, which provides a wide range of energy levels (shifts up to ± 0.5 eV), is demonstrated through physical contact with chemically versatile graphene oxide (GO) sheets, a 2D dopant that can be solution-processed. GO sheets are a p-type dopant due to their abundance of electron-withdrawing functional groups. To expand the energy window of GO-doped graphene, the GO surface is chemically modified with electron-donating ethylene diamine molecules. The amine-functionalized GO sheets exhibit strong n-type doping behaviors. In addition, the particular physicochemical characteristics of the GO sheets, namely their sheet sizes, number of layers, and degree of oxidation and amine functionality, are systematically varied to finely tune their energy levels. Finally, the tailor-made GO sheet dopants are applied into graphene-based electronic devices, which are found to exhibit improved device performances. These results demonstrate the potential of GO sheet dopants in many graphene-based electronics applications.

3.
Phys Chem Chem Phys ; 19(28): 18612-18618, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28692094

RESUMO

Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs). HCNFs are prepared using a Ni-Fe catalyst and subsequently multi-functionalized with oxygen using the Hummers' method, and then with both oxygen and nitrogen-containing 2-ureido-4[1H]pyrimidinone (UHP) moieties, which endow the HCNFs with the ability to form quadruple hydrogen bonds (QHBs). The as-prepared HCNFs are, on average, 13 µm in length and 100 nm in diameter, with a highly graphitic structure. The oxidized HCNFs (Ox-HCNFs) obtained by Hummers' method are partially exfoliated, having double-bladed saw-like structures that extend in the direction of the graphite planes. QHBs are formed between the HCNFs after functionalization with the UHP moieties. The final surface-modified HCNFs (N-Ox-HCNFs) have more electrochemical sites, shorter Li+ diffusion lengths, and additional electron pathways compared with the as-prepared HCNF and Ox-HCNF. The introduction of oxygen- and nitrogen-containing functional groups improves the performance of LIBs: a high charge capacity of 763 mA h g-1 at 0.1 A g-1, excellent rate capability (a capacity of 402 mA h g-1 at 3 A g-1), and near 100% capacity retention after 300 cycles are reported.

4.
Small ; 11(23): 2774-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25656352

RESUMO

Monolithically structured reduced graphene oxide (rGO), prepared from a highly concentrated and conductive rGO paste, is introduced as an anode material for lithium ion batteries with high rate capacities. This is achieved by a mixture of rGO paste and the water-soluble polymer sodium carboxymethylcellulose (SCMC) with freeze drying. Unlike previous 3D graphene porous structures, the monolithic graphene resembles densely branched pine trees and has high mechanical stability with strong adhesion to the metal electrodes. The structures contain numerous large surface area open pores that facilitate lithium ion diffusion, while the strong hydrogen bonding between the graphene layers and SCMC provides high conductivity and reduces the volume changes that occur during cycling. Ultrafast charge/discharge rates are obtained with outstanding cycling stability and the capacities are higher than those reported for other anode materials. The fabrication process is simple and straightforward to adjust and is therefore suitable for mass production of anode electrodes for commercial applications.

5.
Small ; 10(10): 2057-66, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24578338

RESUMO

We present a straightforward method for simultaneously enhancing the electrical conductivity, environmental stability, and photocatalytic properties of graphene films through one-step transfer of CVD graphene and integration by introducing TiO2/graphene oxide layer. A highly durable and flexible TiO2 layer is successfully used as a supporting layer for graphene transfer instead of the commonly used PMMA. Transferred graphene/TiO2 film is directly used for measuring the carrier transport and optoelectronic properties without an extra TiO2 removal and following deposition steps for multifunctional integration into devices because the thin TiO2 layer is optically transparent and electrically semiconducting. Moreover, the TiO2 layer induces charge screening by electrostatically interacting with the residual oxygen moieties on graphene, which are charge scattering centers, resulting in a reduced current hysteresis. Adsorption of water and other chemical molecules onto the graphene surface is also prevented by the passivating TiO2 layer, resulting in the long term environmental stability of the graphene under high temperature and humidity. In addition, the graphene/TiO2 film shows effectively enhanced photocatalytic properties because of the increase in the transport efficiency of the photogenerated electrons due to the decrease in the injection barrier formed at the interface between the F-doped tin oxide and TiO2 layers.

6.
RSC Adv ; 14(16): 11524-11532, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38601707

RESUMO

Graphene oxide quantum dots (GOQDs) are promising candidates for biomedical applications since they have lower toxicity and higher biocompatibility than traditional semiconductor quantum dots. However, oxygen functional groups such as epoxy and hydroxyl groups usually induce nonradiative relaxation, which leads to GOQDs exhibiting nonemissive properties. For the enhancement of the emission efficiency of GOQDs, the number of nonradiative relaxation sites should be reduced. This paper reports the synthesis of highly luminescent reduced GOQDs prepared by liquid-phase photoreduction (LPP-rGOQDs). First, GOQDs was fabricated from single-walled carbon nanotubes through chlorate-based oxidation and separation after acoustic cavitation. Subsequently, LPP-rGOQDs were obtained by liquid-phase photoreduction of the GOQD suspension under intense pulsed light irradiation. Liquid-phase photoreduction selectively reduced epoxy groups present on the basal plane of GOQDs, and hydrogenated the basal plane without removal of carbonyl and carboxyl groups at the edges of the GOQDs. Such selective removal of oxidative functional groups was used to control the reduction degree of GOQDs, closely related to their optical properties. The optimized LPP-rGOQDs were bright blue in color and showed quantum yields up to about 19.7%, which was 10 times the quantum yield of GOQDs. Furthermore, the LPP-rGOQDs were utilized to image a human embryonic kidney (HEK293A), and a low cytotoxicity level and satisfactory cell imaging performance were observed.

7.
Nanomaterials (Basel) ; 14(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998699

RESUMO

The efficient dispersion of single-walled carbon nanotubes (SWCNTs) has been the subject of extensive research over the past decade. Despite these efforts, achieving individually dispersed SWCNTs at high concentrations remains challenging. In this study, we address the limitations associated with conventional methods, such as defect formation, excessive surfactant use, and the use of corrosive solvents. Our novel dispersion method utilizes the spontaneous charging of SWCNTs in a solvated electron system created by dissolving potassium in hexamethyl phosphoramide (HMPA). The resulting charged SWCNTs (c-SWCNTs) can be directly dispersed in the charging medium using only magnetic stirring, leading to defect-free c-SWCNT dispersions with high concentrations of up to 20 mg/mL. The successful dispersion of individual c-SWCNT strands is confirmed by their liquid-crystalline behavior. Importantly, the dispersion medium for c-SWCNTs exhibits no reactivity with metals, polymers, or other organic solvents. This versatility enables a wide range of applications, including electrically conductive free-standing films produced via conventional blade coating, wet-spun fibers, membrane electrodes, thermal composites, and core-shell hybrid microparticles.

8.
Small ; 9(12): 2182-8, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23335443

RESUMO

Patterned reduced graphene oxide (rGO) films with vertically aligned tip structures are fabricated by a straightforward self-assembly method. The size, uniformity of the patterns, and alignment of the tips are successfully controlled according to the concentration of a GO/octadecylamine (ODA)-dispersed solution. The surface energy difference between the GO/ODA solution and a self-assembled water droplet is a critical parameter for determining the pattern structure. Numerous rGO nanosheets are formed so as to be vertically aligned with respect to the substrate during film fabrication at GO concentrations below 2.0 g/L. These samples provide high field-emission characteristics. The patterned rGO arrays are highly flexible with preservation of the field emission properties, even at large bending angles. This is attributed to the high crystallinity, emitter density, and good chemical stability of the rGO arrays, as well as the strong interactions between the rGO arrays and the substrate.

9.
Adv Sci (Weinh) ; 10(8): e2205924, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683156

RESUMO

Promoting the feasibility of carbon films as electrode applications requires sufficient performances in view of both electrical and mechanical properties. Herein, carbon films with ultrahigh electrical conductivity and mechanical modulus are prepared by high temperature carbonization of polyacrylonitrile (PAN)/single-walled carbon nanotube (SWNT) nanocomposites. Achieving both performances is ascribed to remarkable graphitic crystallinity, resulting from the sequential templating-coalescing behavior of concentrated SWNT bundles (B-CNTs). While well-dispersed SWNTs (WD-CNTs) facilitate radial templating according to their tubular geometry, flattened B-CNTs sandwiched between carbonized PAN matrices induce vertical templating, where the former and latter produce concentric and planar crystallizations of the graphitic structure, respectively. After carbonization at 2500 °C with the remaining WD-CNTs as microstructural defects, the flattened B-CNTs coalesce into graphitic crystals by zipping the surrounding matrix, resulting in high crystallinity with the crystal thicknesses of 27.4 and 39.4 nm for the (002) and (10) planes, respectively. For comparison, the graphene oxide (GO) containing carbon films produce a less-ordered graphitic phase owing to irregular templating, despite the geometrical consistency. Consequently, PAN/B-CNT carbon films exhibit exceptional electrical conductivity (40.7 × 104 S m-1 ) and mechanical modulus (38.2 ± 6.4 GPa). Thus, controlling the templating-coalescing behavior of SWNTs is the key for improving final performances of carbon films.

10.
Small ; 8(2): 272-80, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22106027

RESUMO

Flexible field-emission devices (FEDs) based on reduced graphene oxide (RGO) emitters are fabricated by the thermal welding of RGO thin films onto a polymeric substrate. The RGO edges are vertically aligned relative to the substrate as a result of cohesive failure in the RGO layer after thermal welding. Even at large bending angles, excellent electron emission properties, such as low turn-on and threshold fields, a high emission current density, a high field enhancement factor, and long-term stability of the emission properties of RGO emitters, arise from the uniform distribution and high density of the extremely sharp RGO edges, as well as the high interfacial strength between the RGO emitters and the substrate. Al- and Au-doped RGO emitters are fabricated by introducing a dopant solution to the RGO emitters, and the resulting field-emission characteristics are discussed. The proposed approach is straightforward and enables the practical use of high-performance RGO flexible FEDs.

11.
ACS Omega ; 7(47): 43092-43101, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467915

RESUMO

Laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) analysis is harnessed to investigate the chemical structure and photochemical properties of two distinct graphene oxide (GO) derivatives simultaneously. The GO derivatives are synthesized with modified Brodie's method (BGO) and Hummers' method (HGO) and characterized by LDI-TOF-MS as well as conventional tools. A series of LDI-TOF-MS analyses reveal that BGO provides higher laser energy absorption, photochemical stability, and photothermal conversion property than HGO based on their fragmentation patterns and laser desorption/ionization behavior of a thermometer molecule. Based on these characteristics, BGO exhibits higher efficiency in the LDI-TOF-MS analysis of various small molecules and synthetic polymers than HGO. These different photochemical properties of BGO are derived from its large sp2 carbon domains compared to HGO. Based on our findings, the analytical potential of LDI-TOF-MS for GO derivatives is clearly demonstrated, which can be an efficient and unique characterization tool to explore both chemical structures and photochemical properties of various carbon materials.

12.
Nanoscale Adv ; 3(6): 1597-1602, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36132569

RESUMO

The thermal stability of solution-exfoliated graphene oxide (GO) in air is one of the most important physical properties influencing its potential applications. To date, the majority of the GO prepared by the KMnO4-based oxidation of graphite is thermally unstable in air due to the presence of highly oxidative functional groups, such as carboxyl and lactol groups that possess defective basal plane structures. Here, we demonstrate that less defective and metal ion-free GO nanosheets including those with a high oxidation level can remain very stable even above 300 °C under ambient conditions. These GO nanosheets were produced by the exfoliation of graphite oxide fabricated by the modified Brodie method in NH4OH solution, effectively excluding metal ions that can promote the thermal decomposition of GO in air at elevated temperatures. The deoxygenation of ammonia-assisted GO (AGO) was initiated at temperatures above 200 °C, while GO exfoliated in the KOH solution (KGO) decomposed, even at 180 °C. Notably, AGO was exceptionally resistant at 400 °C, even at a very slow heating rate of 2 °C min-1. Conversely, KGO was significantly oxidized, even at 250 °C. The superior thermal stability of AGO is favorable for the fabrication of conductive surface graphene films and conductive fibers by low-temperature annealing.

13.
ACS Appl Mater Interfaces ; 13(26): 31051-31058, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156236

RESUMO

Highly stable conducting fibers have attracted significant attention in electronic textile (e-textile) applications. Here, we fabricate highly conducting poly(vinyl alcohol) (PVA) nanocomposite fibers with high thermal and chemical stability based on silver nanobelt (AgNB)/multiwalled carbon nanotube (MWCNT) hybrid materials as conducting fillers. At 20 vol % AgNB/MWCNT, the electrical conductivity of the fiber dramatically increased (∼533 times) from 3 up to 1600 S/cm after thermal treatment at 300 °C for 5 min. Moreover, PVA/AgNB/MWCNT fiber resists the harsh conditions of good solvents for PVA as well as high temperatures over the melting point of PVA, whereas pure PVA fiber is unstable in these environments. The significantly enhanced electrical conductivity and chemical stability can be realized through the post-thermal curing process, which is attributed to the coalescence between adjacent AgNBs and additional intensive cross-linking of PVA. These remarkable characteristics make our conducting fibers suitable for applications in e-textiles such as water leakage detectors and wearable heaters. In particular, heating behavior of e-textiles by Joule heating can accelerate the desorption of physically trapped moisture from the fiber surface, resulting in the fully reversible operation of water leakage monitoring. This smart e-textile sensor based on highly stable and conductive composite fibers will pave the way for diverse e-textile applications.

14.
Sci Rep ; 11(1): 5140, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664300

RESUMO

Soft electronic devices that are bendable and stretchable require stretchable electric or electronic components. Nanostructured conducting materials or soft conducting polymers are one of the most promising fillers to achieve high performance and durability. Here, we report silver nanoparticles (AgNPs) embedded with single-walled carbon nanotubes (SWCNTs) synthesized in aqueous solutions at room temperature, using NaBH4 as a reducing agent in the presence of highly oxidized SWCNTs as efficient nucleation agents. Elastic composite films composed of the AgNPs-embedded SWCNTs, Ag flake, and polydimethylsiloxane are irradiated with radiation from a Xenon flash lamp within a time interval of one second for efficient sintering of conductive fillers. Under high irradiation energy, the stretchable electrodes are created with a maximum conductivity of 4,907 S cm-1 and a highly stretchable stability of over 10,000 cycles under a 20% strain. Moreover, under a low irradiation energy, strain sensors with a gauge factor of 76 under a 20% strain and 5.4 under a 5% strain are fabricated. For practical demonstration, the fabricated stretchable electrode and strain sensor are attached to a human finger for detecting the motions of the finger.

15.
Langmuir ; 26(5): 3252-6, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20000739

RESUMO

Releasing 1D nanoarrays from nanotemplates is a significant challenge for the integration of mechanically soft materials in a variety of newly emerging technological areas. To fabricate nanoarrays without defects, the combined effects of the surface energy and the geometric features of the nanotemplate should be considered. A previously reported approach based on the correlation between the adhesion energy and the real contact area was not satisfactory to describe the rupture conditions of the nanofibers while they were being peeled off from the porous template. Here we demonstrate that the aspect ratio rather than the contact area of the nanoporous template is the key factor determining the upper limit of the pore length of the nanotemplate with respect to the rupture of the nanoarray during separation. We propose that the value of alpha(c)*, which is calculated with a simple expression in which the adhesion energy is multiplied by the aspect ratio, can be used as an excellent criterion for the fabrication of 1D nanoarrays without defects with a simple peel-off processes. Our approach opens up new applications for unconventional lithographic techniques, such as soft lithography, imprint lithography, and others.


Assuntos
Elastômeros/química , Nanotecnologia/instrumentação , Dimetilpolisiloxanos/química , Fenômenos Mecânicos , Porosidade , Propriedades de Superfície
16.
Adv Sci (Weinh) ; 7(1): 1902521, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31921572

RESUMO

In this study, a pairing of a previously unidentified 3D printing technique and soft materials is introduced in order to achieve not only high-resolution printed features and flexibility of the 3D-printed materials, but also its light-weight and electrical conductivity. Using the developed technique and materials, high-precision and highly sensitive patient-specific wearable active or passive devices are fabricated for personalized health monitoring. The fabricated biosensors show low density and substantial flexibility because of 3D microcellular network-type interconnected conductive materials that are readily printed using an inkjet head. Using high-resolution 3D scanned body-shape data, on-demand personalized wearable sensors made of the 3D-printed soft and conductive materials are fabricated. These sensors successfully detect both actively changing body strain signals and passively changing signals such as electromyography (EMG), electrodermal activity (EDA), and electroencephalogram EEG. The accurately tailored subject-specific shape of the developed sensors exhibits higher sensitivity and faster real-time sensing performances in the monitoring of rapidly changing human body signals. The newly developed 3D printing technique and materials can be widely applied to various types of wearable, flexible, and light-weight biosensors for use in a variety of inexpensive on-demand and personalized point-of-care diagnostics.

17.
ACS Appl Mater Interfaces ; 12(1): 1322-1329, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31840977

RESUMO

Compared with traditional metal-oxide lithium-ion battery (LIB) cathodes, nanocarbon-based cathode materials have received much attention for potential application in LIBs because of their superior power density and long-term cyclability. However, their lithium-ion storage capacity needs further improvement for practical applications, and the trade-off between capacity and conductivity, when oxygen functional groups as lithium-ion storage sites are introduced to the nanocarbon materials, needs to be addressed. Here, we report a sequential oxidation-reduction process for the synthesis of single-walled carbon nanotubes (SWCNTs) for LIB cathodes with fast charging, long-term cyclability, and high gravimetric capacity. A LIB cathode based on highly exfoliated (dbundle < 10 nm) and oxygen-functionalized single-walled carbon nanotubes is obtained via the modified Brodie's method using fuming nitric acid and a mild oxidant (B-SWCNTs). Post treatment including horn sonication and hydrogen thermal reduction developed surface defects and removed the unnecessary C-O groups, resulting in an increase in the Li-ion storage capacity. The B-SWCNTs exhibit a high reversible gravimetric capacity of 344 mA h g-1 at 0.1 A g-1 without noticeable capacity fading after 1000 cycles. Furthermore, it delivers a high gravimetric energy density of 797 W h kgelectrode-1 at a low gravimetric power density of 300 W kgelectrode-1 and retains its high gravimetric energy density of ∼100 W h kgelectrode-1 at a high gravimetric power of 105 W kgelectrode-1. These results suggest that the highly exfoliated, oxygen-functionalized single-walled carbon nanotubes can be applied to LIBs designed for high-rate operations and long cycling.

18.
Nanotechnology ; 20(10): 105705, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19417533

RESUMO

Large interfacial C(60) clusters were directly imaged at the supporting film-substrate interface in physically detached polystyrene-C(60) nanocomposite films by atomic force microscopy, confirming the stabilizing mechanism previously hypothesized for thin polymer films. Additionally, we found that the C(60) additive influences basic thermodynamic film properties such as the interfacial energy and the film thermal expansion coefficient.


Assuntos
Ácidos Carboxílicos/química , Cristalização/métodos , Fulerenos/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
19.
ACS Appl Mater Interfaces ; 11(22): 20183-20191, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31074261

RESUMO

Size-selected graphene oxide (GO) nanosheets were used to modify the bulk heterojunction (BHJ) morphology and electrical properties of organic photovoltaic (OPV) devices. The GO nanosheets were prepared with sizes ranging from several hundreds of nanometers to micrometers by using a physical sonication process and were then incorporated into PTB7:PC71BM photoactive layers. Different GO sizes provide varied portions of the basal plane where aromatic sp2-hybridized regions are dominant and edges where oxygenated functional groups are located; thus, GO size distributions affect the GO dispersion stability and morphological aggregation of the BHJ layer. Electron delocalization by sp2-hybridization and the electron-withdrawing characteristics of functional groups p-dope the photoactive layer, giving rise to increasing carrier mobilities. Hole and electron mobilities are maximized at GO sizes of several hundreds of nanometers. Consequently, non-geminate recombination is significantly reduced by these facilitated hole and electron transports. The addition of GO nanosheets decreases the recombination order of non-geminate recombination and increases the generated carrier density. This reduction in the non-geminate recombination contributes to an increased power conversion efficiency of PTB7:PC71BM OPV devices as high as 9.21%, particularly, by increasing the fill factor to 70.5% in normal devices and 69.4% in inverted devices.

20.
Adv Mater ; 30(43): e1803388, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30216564

RESUMO

Human skin imperfectly discriminates between pressure and temperature stimuli under mixed stimulation, and exhibits nonlinear sensitivity to each stimulus. Despite great advances in the field of electronic skin (E-skin), the limitations of human skin have not previously been overcome. For the first time, the development of a stimulus-discriminating and linearly sensitive bimodal E-skin that can simultaneously detect and discriminate pressure and temperature stimuli in real time is reported. By introducing a novel device design and using a temperature-independent material, near-perfect stimulus discriminability is realized. In addition, the hierarchical contact behavior of the surface-wrinkled microstructure and the optimally reduced graphene oxide in the E-skin contribute to linear sensitivity to applied pressure/temperature stimuli over wide intensity range. The E-skin exhibits a linear and high pressure sensitivity of 0.7 kPa-1 up to 25 kPa. Its operation is also robust and exhibits fast response to pressure stimulus within 50 ms. In the case of temperature stimulus, the E-skin shows a linear and reproducible temperature coefficient of resistance of 0.83% K-1 in the temperature range 22-70 °C and fast response to temperature change within 100 ms. In addition, two types of stimuli are simultaneously detected and discriminated in real time by only impedance measurements.


Assuntos
Pressão , Temperatura , Dispositivos Eletrônicos Vestíveis , Materiais Biomiméticos , Elasticidade , Grafite , Humanos , Teste de Materiais , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA