Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Small ; 17(47): e2103613, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34677907

RESUMO

The integration of energy conversion and storage systems such as electrochemical water splitting (EWS) and rechargeable zinc-air battery (ZAB) is on the vision to provide a sustainable future with green energy resources. Herein, a unique strategy for decorating 3D tetragonal CoMn2 O4 on carbon cloth (CMO-U@CC) via a facile one-pot in situ hydrothermal process, is reported. The highly exposed morphology of 3D tetragons enhances the electrocatalytic activity of CMO-U@CC. This is the first demonstration of such a bifunctional activity of CMO-U@CC in an EWS system; it achieves a nominal cell voltage of 1.610 V @ 10 mA cm-2 . Similarly, the fabricated rechargeable ZAB delivers a specific capacity of 641.6 mAh gzn -1 , a power density of 135 mW cm-2 , and excellent cyclic stability (50 h @ 10 mA cm-2 ). Additionally, a series of flexible solid-state ZABs are fabricated and employed to power the assembled CMO-U@CC-based water electrolyzer. To the best of the authors' knowledge, this is the first demonstration of an in situ-grown binder-free CMO-U@CC as a flexible multifunctional electrocatalyst for a built-in integrated rechargeable ZAB-powered EWS system.

2.
Cytometry A ; 99(5): 496-502, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32869909

RESUMO

Collection of a blood sample defined by the term "blood liquid biopsy" is commonly used to detect diagnostic, prognostic, and therapeutic decision-making markers of metastatic tumors including circulating tumor cells (CTCs). Many tumors also release CTCs and other markers into lymph fluid, but the utility of lymphatic markers largely remains unexplored. Here, we introduce lymph liquid biopsy through collection of peripheral (afferent) and central (thoracic duct [TD]) lymph samples and demonstrates its feasibility for detection of stem-like CTCs potentially responsible for metastasis development and tumor relapse. Stemness of lymphatic CTCs (L-CTCs) was determined by spheroid-forming assay in vitro. Simultaneously, we tested blood CTCs by conventional blood liquid biopsy, and monitored the primary tumor size, early metastasis in a sentinel lymph node (SLN) and distant metastasis in lungs. Using a mouse model at early melanoma stage with no distant metastasis, we identified stem-like L-CTCs in lymph samples from afferent lymphatic vessels. Since these vessels transport cells from the primary tumor to SLN, our finding emphasizes the significance of the lymphatic pathway in development of SLN metastasis. Surprisingly, in pre-metastatic disease, stem-like L-CTCs were detected in lymph samples from the TD, which directly empties lymph into blood circulation. This suggests a new contribution of the lymphatic system to initiation of distant metastasis. Integration of lymph and blood liquid biopsies demonstrated that all mice with early melanoma had stem-like CTCs in at least one of three samples (afferent lymph, TD lymph, and blood). At the stage of distant metastasis, spheroid-forming L-CTCs were detected in TD lymph, but not in afferent lymph. Altogether, our results demonstrated that lymph liquid biopsy and testing L-CTCs holds promise for diagnosis and prognosis of early metastasis. © 2020 International Society for Advancement of Cytometry.


Assuntos
Células Neoplásicas Circulantes , Biópsia de Linfonodo Sentinela , Humanos , Biópsia Líquida , Linfonodos , Metástase Linfática , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas
3.
J Phys Ther Sci ; 28(9): 2556-2559, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27799693

RESUMO

[Purpose] This study was conducted to determine whether acute aerobic exercise (climbing) is associated with changes in the dietary intake pattern. [Subjects and Methods] Food intake and physical activity data for 15 female college students were sampled for 3 days and categorized according to routine activity or high-intensity activity such as hiking. Nutrient intake based on the data was analyzed using a nutrition program. [Results] Carbohydrate and protein intake was significantly decreased after exercise compared to before acute aerobic exercise, but lipid intake showed no significant difference. Calorie intake was significantly decreased after exercise compared to before exercise; however, calorie consumption was significantly increased after exercise. [Conclusion] Aerobic exercise causes a decrease in total calories by inducing reduction in carbohydrate and protein intake. Therefore, aerobic exercise is very important for weight (body fat) control since it causes positive changes in the food intake pattern in female students.

4.
J Phys Ther Sci ; 27(10): 3171-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26644668

RESUMO

[Purpose] This study was designed to test the effects of the Assistant Chair-Desk System (ACDS), which can reduce the forward tilt of the neck and trunk and the level of fatigue during long lasting study in the sitting position. [Subjects] Fourteen middle school students and 14 college students of mixed gender participated in this study. [Methods] Fatigue level, the trapezius muscle, and the forward tilt angle of the head and trunk as well as distance factors were assessed before after using a normal chair-desk system (NCDS) and the ACDS for 120 minutes. [Results] There was an interaction effect in the angle and length of the neck from the sitting posture changes after 2 hours of studying using the NCDS and ACDS. There were also significant differences in the fatigue levels, hip joint angles and the lengths from the head according to the main effects of the chair-systems. [Conclusion] The studying position while using the ACDS was determined to prevent significant fatigue levels of the muscle and body, provide support to the head, by limiting the forward movement of the neck, and prevent forward tilt of the neck and trunk, by enabling the target point and gaze to be closer to the horizontal direction.

5.
Nano Lett ; 12(2): 640-7, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22268842

RESUMO

We herein report on the large-scale synthesis of ultrathin Bi(2)Te(3) nanoplates and subsequent spark plasma sintering to fabricate n-type nanostructured bulk thermoelectric materials. Bi(2)Te(3) nanoplates were synthesized by the reaction between bismuth thiolate and tri-n-octylphosphine telluride in oleylamine. The thickness of the nanoplates was ~1 nm, which corresponds to a single layer in Bi(2)Te(3) crystals. Bi(2)Te(3) nanostructured bulk materials were prepared by sintering of surfactant-removed Bi(2)Te(3) nanoplates using spark plasma sintering. We found that the grain size and density were strongly dependent on the sintering temperature, and we investigated the effect of the sintering temperature on the thermoelectric properties of the Bi(2)Te(3) nanostructured bulk materials. The electrical conductivities increased with an increase in the sintering temperature, owing to the decreased interface density arising from the grain growth and densification. The Seebeck coefficients roughly decreased with an increase in the sintering temperature. Interestingly, the electron concentrations and mobilities strongly depended on the sintering temperature, suggesting the potential barrier scattering at interfaces and the doping effect of defects and organic residues. The thermal conductivities also increased with an increase in the sintering temperature because of grain growth and densification. The maximum thermoelectric figure-of-merit, ZT, is 0.62 at 400 K, which is one of the highest among the reported values of n-type nanostructured materials based on chemically synthesized nanoparticles. This increase in ZT shows the possibility of the preparation of highly efficient thermoelectric materials by chemical synthesis.


Assuntos
Bismuto/química , Nanoestruturas/química , Telúrio/química , Temperatura , Tamanho da Partícula , Propriedades de Superfície
6.
Artigo em Inglês | MEDLINE | ID: mdl-37795987

RESUMO

The utilization of hydrogen (H2) as a fuel source is hindered by the limited infrastructure and storage requirements. In contrast, ammonia (NH3) offers a promising solution as a hydrogen carrier due to its high energy density, liquid storage capacity, low cost, and sustainable manufacturing. NH3 has garnered significant attention as a key component in the development of next-generation refueling stations, aligning with the goal of a carbon-free economy. The electrochemical nitrogen reduction reaction (ENRR) enables the production of NH3 from nitrogen (N2) under ambient conditions. However, the low efficiency of the ENRR is limited by challenges such as the electron-stealing hydrogen evolution reaction (HER) and the breaking of the stable N2 triple bond. To address these limitations and enhance ENRR performance, we prepared Au@Cu2-xSe electrocatalysts with a core@shell structure using a seed-mediated growth method and a facile hot-injection method. The catalytic activity was evaluated using both an aqueous electrolyte of KOH solution and a nonaqueous electrolyte consisting of tetrahydrofuran (THF) solvent with lithium perchlorate and ethanol as proton donors. ENRR in both aqueous and nonaqueous electrolytes was facilitated by the synergistic interaction between Au and Cu2-xSe (copper selenide), forming an Ohmic junction between the metal and p-type semiconductor that effectively suppressed the HER. Furthermore, in nonaqueous conditions, the Cu vacancies in the Cu2-xSe layer of Au@Cu2-xSe promoted the formation of lithium nitride (Li3N), leading to improved NH3 production. The synergistic effect of Ohmic junctions and Cu vacancies in Au@Cu2-xSe led to significantly higher ammonia yield and faradaic efficiency (FE) in nonaqueous systems compared to those in aqueous conditions. The maximum NH3 yields were approximately 1.10 and 3.64 µg h-1 cm-2, with the corresponding FE of 2.24 and 67.52% for aqueous and nonaqueous electrolytes, respectively. This study demonstrates an attractive strategy for designing catalysts with increased ENRR activity by effectively engineering vacancies and heterojunctions in Cu-based electrocatalysts in both aqueous and nonaqueous media.

7.
J Colloid Interface Sci ; 633: 53-59, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36434935

RESUMO

An electrochemical nitrogen reduction reaction (ENRR) is considered a promising alternative for the traditional Haber-Bosch process. In this study, we present a method for improving the ENRR by controlling the wettability of the catalyst surface, suppressing the hydrogen evolution reaction (HER) while facilitating N2 adsorption. Reduced-graphene oxide (rGO) with a hydrophobic surface property and a contact angle (C.A.) of 59° was synthesized through a high-density atmospheric plasma deposition. Two other hydrophilic and superhydrophobic surfaces with a C.A. of 15° and 150° were developed through additional argon plasma and heat treatment of as-deposited rGO, respectively. The ENRR results showed that the ammonia yield and Faradaic efficiency tended to increase with increasing hydrophobicity. Electrochemical measurements reveal that superhydrophobic rGO achieves a higher Faradaic efficiency (5.73 %) at -0.1 V (vs RHE) and a higher NH3 yield (9.77 µg h-1 cm-2) at -0.4 V (vs RHE) in a 0.1 M KOH electrolyte. In addition, the computational fluid dynamics simulation confirmed that the amount of time the N2 gas remains on the surface could increase by improving the hydrophobicity of the catalytic surface. This study inspires the development of the rGO electrocatalyst through surface wettability modification for boosting ammonia electrosynthesis.


Assuntos
Amônia , Grafite , Molhabilidade , Nitrogênio
8.
ACS Appl Mater Interfaces ; 14(28): 31889-31899, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35816758

RESUMO

Ammonia is a suitable hydrogen carrier with each molecule accounting for up to 17.65% of hydrogen by mass. Among various potential ammonia production methods, we adopt the photoelectrochemical (PEC) technique, which uses solar energy as well as electricity to efficiently synthesize ammonia under ambient conditions. In this article, we report MoS2@La2Zr2O7 heterostructures designed by incorporating two-dimensional (2D)-MoS2 nanoflakes on La2Zr2O7 nanofibers (MoS2@LZO) as photoelectrocatalysts. The MoS2@LZO heterostructures are synthesized by a facile hydrothermal route with electrospun La2Zr2O7 nanofibers and Mo precursors. The MoS2@LZO heterostructures work synergistically to amend the drawbacks of the individual MoS2 electrocatalysts. In addition, the harmonious activity of the mixed phase of pyrochlore/defect fluorite-structured La2Zr2O7 nanofibers generates an interface that aids in increased electrocatalytic activity by enriching oxygen vacancies in the system. The MoS2@LZO electrocatalyst exhibits an enhanced Faradaic efficiency and ammonia yield of approximately 2.25% and 10.4 µg h-1 cm-2, respectively, compared to their corresponding pristine samples. Therefore, the mechanism of improving the PEC ammonia production performance by coupling oxygen-vacant sites to the 2D-semiconductor-based electrocatalysts has been achieved. This work provides a facile strategy to improve the activity of PEC catalysts by designing an efficient heterostructure interface for PEC applications.

9.
J Am Chem Soc ; 132(14): 5227-35, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20235578

RESUMO

We explored the effect of Cd substitution on the thermoelectric properties of PbTe in an effort to test a theoretical hypothesis that Cd atoms on Pb sites of the rock salt lattice can increase the Seebeck coefficient via the formation of a resonance level in the density of states near the Fermi energy. We find that the solubility of Cd is less than previously reported, and CdTe precipitation occurs to create nanostructuring, which strongly suppresses the lattice thermal conductivity. We present detailed characterization including structural and spectroscopic data, transmission electron microscopy, and thermoelectric transport properties of samples of PbTe-x% CdTe-0.055% PbI(2) (x = 1, 3, 5, 7, 10), PbTe-1% CdTe-y% PbI(2) (y = 0.03, 0.045, 0.055, 0.08, 0.1, 0.2), PbTe-5% CdTe-y% PbI(2) (y = 0.01, 0.03, 0.055, 0.08), and PbTe-1% CdTe-z% Sb (z = 0.3, 0.5, 1, 1.5, 2, 3, 4, 5, 6). All samples follow the Pisarenko relationship, and no enhancement of the Seebeck coefficient was observed that could be attributed to a resonance level or a distortion in the density of states. A maximum ZT of approximately 1.2 at approximately 720 K was achieved for the PbTe-1% CdTe-0.055% PbI(2) sample arising from a high power factor of approximately 17 microW/(cm K(2)) and a very low lattice thermal conductivity of approximately 0.5 W/(m K) at approximately 720 K.

10.
Cancers (Basel) ; 12(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028044

RESUMO

The dissemination of circulating tumor cells (CTCs) by lymph fluid is one of the key events in the development of tumor metastasis. However, little progress has been made in studying lymphatic CTCs (L-CTCs). Here, we demonstrate the detection of L-CTCs in preclinical mouse models of melanoma and breast cancer using in vivo high-sensitivity photoacoustic and fluorescent flow cytometry. We discovered that L-CTCs are be detected in pre-metastatic disease stage. The smallest primary tumor that shed L-CTCs was measured as 0.094mm×0.094mm, its volume was calculated as 0.0004 mm3; and its productivity was estimated as 1 L-CTC per 30 minutes. As the disease progressed, primary tumors continued releasing L-CTCs with certain individual dynamics. The integrated assessment of lymph and blood underlined the parallel dissemination of CTCs at all disease stages. However, the analysis of links between L-CTC counts, blood CTC (B-CTC) counts, primary tumor size and metastasis did not reveal statistically significant correlations, likely due to L-CTC heterogeneity. Altogether, our results showed the feasibility of our diagnostic platform using photoacoustic flow cytometry for preclinical L-CTC research with translational potential. Our findings also demonstrated new insights into lymphatic system involvement in CTC dissemination. They help to lay the scientific foundation for the consideration of L-CTCs as prognostic markers of metastasis and to emphasize the integrative assessment of lymph and blood.

11.
ACS Appl Mater Interfaces ; 12(32): 36589-36599, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32667768

RESUMO

One promising approach to improving thermoelectric energy conversion is to use nanostructured interfaces that enhance Seebeck coefficient while reducing thermal conductivity. Here, we synthesized Au-Cu2Se core-shell nanoparticles with different shell thicknesses by controlling the precursor concentration in solution. The Au-Cu2Se core-shell nanoparticles are about 37-53 nm in size, and the cores of the nanostructures are composed of Au nanoparticles with sizes of ∼11 nm. The effect of shell thickness on the thermoelectric properties of core-shell nanocomposites is investigated after sintering the core-shell nanoparticles into pellets using the spark plasma sintering (SPS) technique. The power factor was optimized by the synergetic effect of the improvement of Seebeck coefficient by energy filtering in the Au/Cu2Se interface and the effective tuning of carrier concentration by Ohmic contact in the interface. The lattice thermal conductivity of core-shell nanocomposites is reduced by coherent phonon scattering, which is caused by the wavelike interference of phonons due to the phase shift in the core-shell interface. The highest ZT value of 0.61 is obtained at 723 K for Au-Cu2Se core-shell nanocomposite with a shell thickness of 21 nm, which is higher than that of pure Cu2Se nanocomposite or a mixture of Au and Cu2Se particles.

12.
Biophys J ; 97(1): 164-72, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19580754

RESUMO

Magainin, a 23-residue antibiotic peptide, interacts directly with the lipid bilayer leading to cell lysis in a strongly concentration-dependent fashion. Utilizing cryo-electron microscopy, we have directly observed magainin interacting with synthetic DMPC/DMPG membranes. Visual examination shows that visibly unperturbed vesicles are often found adjacent to vesicles that are lysed or porous, demonstrating that magainin disruption is a highly stochastic process. Quantitatively, power spectra of large numbers of porous vesicles can be averaged together to produce the equivalent of an electron scattering curve, which can be related to theory, simulation, and published neutron scattering experiments. We demonstrate that magainin-induced pores in lipid vesicles have a mean diameter of approximately 80 A, compatible with earlier reported results in multilayer stacks. In addition to establishing a connection between experiments in multilayer stacks and vesicles, this also demonstrates that computed power spectra from windowed-out regions of cryo-EM images can be compared to neutron scattering data in a meaningful way, even though the pores of interest cannot yet be individually identified in images. Cryo-EM offers direct imaging of systems in configurations closely related to in vivo conditions, whereas neutron scattering has a greater variety of mechanisms for specific contrast variation via D2O and deuterated lipids. Combined, the two mechanisms support each other, and provide a clearer picture of such 'soft' systems than either could provide alone.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Lipossomos/química , Proteínas de Xenopus/química , Algoritmos , Animais , Simulação por Computador , Dimiristoilfosfatidilcolina/química , Magaininas , Microscopia Eletrônica/métodos , Modelos Teóricos , Nêutrons , Fosfatidilgliceróis/química , Espalhamento de Radiação , Processos Estocásticos , Temperatura , Xenopus
13.
Biochemistry ; 48(7): 1481-7, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19191587

RESUMO

Human plasma high-density lipoproteins (HDL), the primary vehicle for reverse cholesterol transport, are the target of serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes that turns serum opaque. HDL comprise a core of neutral lipidscholesteryl esters and some triglyceridesurrounded by a surface monolayer of cholesterol, phospholipids, and specialized proteins [apolipoproteins (apos) A-I and A-II]. A HDL is an unstable particle residing in a kinetic trap from which it can escape via chaotropic, detergent, or thermal perturbation. Recombinant (r) SOF catalyzes the transfer of nearly all neutral lipids of approximately 100,000 HDL particles (D approximately 8.5 nm) into a single, large cholesteryl ester-rich microemulsion (CERM; D > 100 nm), leaving a new HDL-like particle [neo HDL (D approximately 5.8 nm)] while releasing lipid-free (LF) apo A-I. CERM formation and apo A-I release have similar kinetics, suggesting parallel or rapid consecutive steps. By using complementary physicochemical methods, we have refined the mechanistic model for HDL opacification. According to size exclusion chromatography, a HDL containing nonlabile apo A-I resists rSOF-mediated opacification. On the basis of kinetic cryo-electron microscopy, rSOF (10 nM) catalyzes the conversion of HDL (4 microM) to neo HDL via a stepwise mechanism in which intermediate-sized particles are seen. Kinetic turbidimetry revealed opacification as a rising exponential reaction with a rate constant k of (4.400 +/- 0.004) x 10(-2) min(-1). Analysis of the kinetic data using transition state theory gave an enthalpy (DeltaH()), entropy (DeltaS(++)), and free energy (DeltaG()) of activation of 73.9 kJ/mol, -66.87 J/K, and 94.6 kJ/mol, respectively. The free energy of activation for opacification is nearly identical to that for the displacement of apo A-I from HDL by guanidine hydrochloride. We conclude that apo A-I lability is required for HDL opacification, LF apo A-I desorption is the rate-limiting step, and nearly all HDL particles contain at least one labile copy of apo A-I.


Assuntos
Apolipoproteína A-I/fisiologia , Lipoproteínas HDL/sangue , Peptídeo Hidrolases/fisiologia , Streptococcus pyogenes/fisiologia , Apolipoproteína A-I/isolamento & purificação , Cromatografia em Gel , Microscopia Crioeletrônica , Humanos , Cinética , Lipoproteínas HDL/química , Termodinâmica
14.
Sci Rep ; 9(1): 887, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696936

RESUMO

Nanoparticles from magnetotactic bacteria have been used in conventional imaging, drug delivery, and magnetic manipulations. Here, we show that these natural nanoparticles and their bioinspired hybrids with near-infrared gold nanorods and folic acid can serve as molecular high-contrast photoacoustic probes for single-cell diagnostics and as photothermal agents for single-cell therapy using laser-induced vapor nanobubbles and magnetic field as significant signal and therapy amplifiers. These theranostics agents enable the detection and photomechanical killing of triple negative breast cancer cells that are resistant to conventional chemotherapy, with just one or a few low-energy laser pulses. In studies in vivo, we discovered that circulating tumor cells labeled with the nanohybrids generate transient ultrasharp photoacoustic resonances directly in the bloodstream as the basis for new super-resolution photoacoustic flow cytometry in vivo. These properties make natural and bioinspired magnetic nanoparticles promising biocompatible, multimodal, high-contrast, and clinically relevant cellular probes for many in vitro and in vivo biomedical applications.


Assuntos
Nanopartículas de Magnetita/uso terapêutico , Técnicas Fotoacústicas/métodos , Análise de Célula Única/métodos , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Ouro/uso terapêutico , Humanos , Hipertermia Induzida , Camundongos , Nanopartículas/uso terapêutico , Nanotubos , Neoplasias/patologia , Fototerapia , Nanomedicina Teranóstica
15.
J Biophotonics ; 12(4): e201800265, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30511464

RESUMO

Progress in understanding the cell biology and diseases depends on advanced imaging and labeling techniques. Here, we address this demand by exploring novel multilayered nanocomposites (MNCs) with plasmonic nanoparticles and absorbing dyes in thin nonabsorbing shells as supercontrast multimodal photoacoustic (PA) and fluorescent agents in the near-infrared range. The proof of concept was performed with gold nanorods (GNRs) and indocyanine green (ICG) dispersed in a matrix of biodegradable polymers. We demonstrated synergetic PA effects in MNCs with the gold-ICG interface that could not be achieved with ICG and GNRs alone. We also observed ultrasharp PA and emission peaks that could be associated with nonlinear PA and spaser effects, respectively. Low-toxicity multimodal MNCs with unique plasmonic, thermal and acoustic properties have the potential to make a breakthrough in PA flow cytometry and near-infrared spasers in vivo by using the synergetic interaction of plasmonic modes with a nearby absorbing medium.


Assuntos
Corantes Fluorescentes/química , Nanocompostos/química , Técnicas Fotoacústicas , Animais , Ouro/química , Verde de Indocianina/química , Camundongos , Nanotubos/química
16.
ACS Nano ; 13(7): 8347-8355, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31260259

RESUMO

In thermoelectric energy conversions, thermal conductivity reduction is essential for enhancing thermoelectric performance while maintaining a high power factor. Herein, we propose an approach based on coated-grain structures to effectively reduce the thermal conductivity to a much greater degree when compared to that done by conventional nanodot nanocomposite. By incorporating CdTe coated layers on the surface of SnTe grains, the thermal conductivity is as low as 1.16 W/m-K at 929 K, resulting in a thermoelectric figure of merit, i.e., zT, of 1.90. According to our developed theory, phonons scatter coherently due to the phase lag between phonons passing through and around the coated grain. Such scattering is induced by the acoustic impedance mismatch between the coated layer and the grain, resulting in a gigantic phonon-scattering cross section. The phonon-scattering cross section of the coated grains is several orders of magnitude larger than that of the nanodots with the same impurity concentration. The power factor was also slightly increased by the energy filtering effect at the coated surface and additional minority carrier blocking by the heterointerfaces. This scheme can be utilized for various bulk crystals, meaning a broad range of materials can be considered for thermoelectric applications.

17.
Iran J Public Health ; 47(Suppl 1): 19-26, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30186808

RESUMO

BACKGROUND: Recently, there has been a trend that cigarette smoking rate in Asian and Africa adults has increased while the age group to start smoking has decreased gradually. This study aimed to investigate the relationships between lifetime smoking and hypertension, diabetes, obesity, waist measure, fasting blood pressure and food consumption, in order to look into health status depending on smoking status in Koreans. METHODS: Totally, 1075 men and 697 women with no disease participated in this study, in which one-way ANOVA was conducted by using SPSS version 18.0 for statistical process. The level of statistical significance was 0.05. RESULTS: As a result of analysis on relationship between lifetime smoking and hypertension, obesity and diabetes, statistically significant differences were revealed.Lifetime smoking was found to be significantly associated with increased waist measure, higher level of fasting blood sugar, and more ingestion of nutrients (carbohydrate, fat, and protein). CONCLUSION: Increased amount of lifetime cigarette smoking was shown to negatively influence various health factors, which might become to be a drive to cause diseases. Therefore, method to improve health factors must be sought for via education and campaign to control an amount of cigarette smoking in Korean adults.

18.
Cancer Chemother Pharmacol ; 60(5): 625-33, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17195067

RESUMO

PURPOSE: Our goal was to perform studies on the specificity and antimelanoma mechanism of a novel bis-anthracycline, WP760. WP760 initially identified in the NCI 160 screen as anti-melanoma. METHODS: The methyl thiazolyl tetrazolium reduction (MTT) assay was used to test tumor cell growth inhibition; confocal microscopy to view WP760 intracellular distribution; flow cytometry for cell-cycle arrest and apoptosis; and Western blotting was employed to identify and compare quantities and kinetics of cell growth related molecule levels. RESULTS: WP760 induced G(2)/M-phase cell-cycle arrest and apoptosis in melanoma cell lines and short-term melanoma explants established from clinical specimens in a time and concentration dependent manner at nM concentrations. In contrast, effects on fibroblasts and A549 lung cancer cells required higher concentrations, suggesting that WP760 possesses selectivity for melanoma. Molecular studies indicated that WP760 induced p53 stabilization, checkpoint kinase 2 and p27(Kip1) protein upregulation, and activation of caspase-3. Endogenous nitric oxide (NO) production has been implicated in the chemoresistance of melanoma; WP760 caused inhibition of the inducible nitric oxide synthase (iNOS) protein as well as inhibition of phosphorylation of ERK, known to drive the iNOS pathway. Based on WP760 localization into mitochondria, and caspase-3 inhibitor block the killing of WP760, the intrinsic pathway of apoptosis appears to have been activated. CONCLUSIONS: Our results indicate that WP760 affects a critical and unique set of growth regulatory effects in melanoma, and is a promising candidate for further preclinical studies.


Assuntos
Antraciclinas/farmacologia , Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Antraciclinas/uso terapêutico , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Humanos , Mitocôndrias/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células Tumorais Cultivadas
19.
Materials (Basel) ; 10(11)2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29072613

RESUMO

In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi2Te3, n-type Bi2Te3 co-doped with x at % CuI and 1/2x at % Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi2Te3 were measured in the temperature range from 300 K to 523 K, and compared to corresponding x% of CuI-doped Bi2Te3 and undoped Bi2Te3. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi2Te3 rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot) of co-doped samples (κtot ~ 1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi2Te3 (κtot ~ 1.5 W/m∙K at 300 K) and undoped Bi2Te3 (κtot ~ 1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi2Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi2Te3 and its operating temperature can be controlled by co-doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA