Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1024-D1032, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941143

RESUMO

The silkworm Bombyx mori is a domesticated insect that serves as an animal model for research and agriculture. The silkworm super-pan-genome dataset, which we published last year, is a unique resource for the study of global genomic diversity and phenotype-genotype association. Here we present SilkMeta (http://silkmeta.org.cn), a comprehensive database covering the available silkworm pan-genome and multi-omics data. The database contains 1082 short-read genomes, 546 long-read assembled genomes, 1168 transcriptomes, 294 phenotype characterizations (phenome), tens of millions of variations (variome), 7253 long non-coding RNAs (lncRNAs), 18 717 full length transcripts and a set of population statistics. We have compiled publications on functional genomics research and genetic stock deciphering (mutant map). A range of bioinformatics tools is also provided for data visualization and retrieval. The large batch of omics data and tools were integrated in twelve functional modules that provide useful strategies and data for comparative and functional genomics research. The interactive bioinformatics platform SilkMeta will benefit not only the silkworm but also the insect biology communities.


Assuntos
Bombyx , Genoma de Inseto , Animais , Bombyx/genética , Biologia Computacional , Genômica , Metadados , Multiômica
2.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36718535

RESUMO

The genetic basis of phenotypic variation is a long-standing concern of evolutionary biology. Coloration has proven to be a visual, easily quantifiable, and highly tractable system for genetic analysis and is an ever-evolving focus of biological research. Compared with the homogenized brown-yellow cocoons of wild silkworms, the cocoons of domestic silkworms are spectacularly diverse in color, such as white, green, and yellow-red; this provides an outstanding model for exploring the phenotypic diversification and biological coloration. Herein, the molecular mechanism underlying silkworm green cocoon formation was investigated, which was not fully understood. We demonstrated that five of the seven members of a sugar transporter gene cluster were specifically duplicated in the Bombycidae and evolved new spatial expression patterns predominantly expressed in silk glands, accompanying complementary temporal expression; they synergistically facilitate the uptake of flavonoids, thus determining the green cocoon. Subsequently, polymorphic cocoon coloring landscape involving multiple loci and the evolution of cocoon color from wild to domestic silkworms were analyzed based on the pan-genome sequencing data. It was found that cocoon coloration involved epistatic interaction between loci; all the identified cocoon color-related loci existed in wild silkworms; the genetic segregation, recombination, and variation of these loci shaped the multicolored cocoons of domestic silkworms. This study revealed a new mechanism for flavonoids-based biological coloration that highlights the crucial role of gene duplication followed by functional diversification in acquiring new genetic functions; furthermore, the results in this work provide insight into phenotypic innovation during domestication.


Assuntos
Bombyx , Animais , Bombyx/genética , Bombyx/metabolismo , Seda/genética , Seda/metabolismo , Sequência de Bases , Flavonoides/metabolismo
3.
Pestic Biochem Physiol ; 204: 106111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277412

RESUMO

Bombyx mori is an insect species of great economic importance, and its silk gland is a vital organ for the synthesis and secretion of silk protein. However, long-term artificial domestication of B. mori has resulted in high sensitivity to chemical toxins, especially insecticides. Cyantraniliprole (Cya), a second-generation ryanodine receptor modulator insecticide, is widely utilized in agriculture for pest control. In this study, the impact of Cya toxicity on the development of silk glands in the 5th instar larvae of B. mori was assessed using Cya LC5, LC10 and LC20, as well as a starvation treatment group for comparison. Short-term exposure (24 h) to different concentrations of Cya resulted in delayed development of silk glands in B. mori. Meanwhile, the body weight, silk gland weight, silk gland index and cocoon quality were significantly reduced in a concentration-dependent manner, except for the Cya LC5 treatment. Histopathological and ultrastructural analysis revealed that Cya LC10 induced disruption of the nuclear membrane and endoplasmic reticulum in the posterior silk gland (PSG) cells, leading to the formation of intracellular vacuoles. Transcriptome sequencing of PSGs identified 2152 genes that were differentially expressed after exposure to Cya LC10, with 1153 down-regulated genes and 999 up-regulated genes. All differentially expressed genes were subjected to functional annotation using gene ontology and Kyoto encyclopedia of genes and genomes database, and it was found that protein synthesis-related pathways were significantly enriched, with the majority of genes being down-regulated. Furthermore, the transcription levels of genes involved in "protein processing in endoplasmic reticulum", "protein export", "proteasome" and "DNA replication" were quantified using qRT-PCR. Our findings suggested that short-term exposure to Cya LC10 resulted in disruption of DNA replication, as well as protein transport, processing and hydrolysis in the PSG cells of B. mori. The results of this study provide a theoretical foundation for the safe utilization of Cya in sericulture production.


Assuntos
Bombyx , Inseticidas , Larva , Pirazóis , Transcriptoma , ortoaminobenzoatos , Animais , Bombyx/efeitos dos fármacos , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Transcriptoma/efeitos dos fármacos , ortoaminobenzoatos/toxicidade , Inseticidas/toxicidade , Pirazóis/toxicidade , Larva/efeitos dos fármacos , Larva/genética , Seda , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
4.
PLoS Genet ; 16(9): e1009004, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986696

RESUMO

Many insects spin cocoons to protect the pupae from unfavorable environments and predators. After emerging from the pupa, the moths must escape from the sealed cocoons. Previous works identified cocoonase as the active enzyme loosening the cocoon to form an escape-hatch. Here, using bioinformatics tools, we show that cocoonase is specific to Lepidoptera and that it probably existed before the occurrence of lepidopteran insects spinning cocoons. Despite differences in cocooning behavior, we further show that cocoonase evolved by purification selection in Lepidoptera and that the selection is more intense in lepidopteran insects spinning sealed cocoons. Experimentally, we applied gene editing techniques to the silkworm Bombyx mori, which spins a dense and sealed cocoon, as a model of lepidopteran insects spinning sealed cocoons. We knocked out cocoonase using the CRISPR/Cas9 system. The adults of homozygous knock-out mutants were completely formed and viable but stayed trapped and died naturally in the cocoon. This is the first experimental and phenotypic evidence that cocoonase is the determining factor for breaking the cocoon. This work led to a novel silkworm strain yielding permanently intact cocoons and provides a new strategy for controlling the pests that form cocoons.


Assuntos
Bombyx/enzimologia , Estágios do Ciclo de Vida/fisiologia , Animais , Animais Geneticamente Modificados , Bombyx/genética , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Homozigoto , Mutação , Filogenia , Seleção Genética , Especificidade da Espécie
5.
PLoS Genet ; 16(7): e1008907, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667927

RESUMO

Holometabolous insects have distinct larval, pupal, and adult stages. The pupal stage is typically immobile and can be subject to predation, but cocoon offers pupal protection for many insect species. The cocoon provides a space in which the pupa to adult metamorphosis occurs. It also protects the pupa from weather, predators and parasitoids. Silk protein is a precursor of the silk used in cocoon construction. We used the silkworm as a model species to identify genes affecting silk protein synthesis and cocoon construction. We used quantitative genetic analysis to demonstrate that ß-1,4-N-acetylglucosaminidase 1 (BmGlcNase1) is associated with synthesis of sericin, the main composite of cocoon. BmGlcNase1 has an expression pattern coupled with silk gland development and cocoon shell weight (CSW) variation, and CSW is an index of the ability to synthesize silk protein. Up-regulated expression of BmGlcNase1 increased sericin content by 13.9% and 22.5% while down-regulation reduced sericin content by 41.2% and 27.3% in the cocoons of females and males, respectively. Genomic sequencing revealed that sequence variation upstream of the BmGlcNase1 transcriptional start site (TSS) is associated with the expression of BmGlcNase1 and CSW. Selective pressure analysis showed that GlcNase1 was differentially selected in insects with and without cocoons (ω1 = 0.044 vs. ω2 = 0.154). This indicates that this gene has a conserved function in the cocooning process of insects. BmGlcNase1 appears to be involved in sericin synthesis and silkworm cocooning.


Assuntos
Acetilglucosaminidase/genética , Bombyx/genética , Cruzamento , Domesticação , Animais , Bombyx/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Biossíntese de Proteínas/genética , Seda/genética
6.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563544

RESUMO

Insect cuticle is critical for the environmental adaptability and insecticide resistance of insects. However, there is no clear understanding of the structure and protein components of the cuticle during each developmental stage of holometabolous insects, and knowledge about the protein components within each layer is vague. We conducted serial sectioning, cuticular structure analysis, and transcriptome sequencing of the larval, pupal, and adult cuticles of Bombyx mori. The deposition processes of epicuticle, exocuticle, and endocuticle during larval, pupal, and adult cuticle formation were similar. Transcriptome analysis showed that these cuticle formations share 74% of the expressed cuticular protein (CP) genes and 20 other structural protein genes, such as larval serum protein and prisilkin. There are seven, six, and eleven stage-specific expressed CP genes in larval, pupal, and adult cuticles, respectively. The types and levels of CP genes may be the key determinants of the properties of each cuticular layer. For example, the CPs of the RR-2 protein family with high contents of histidine (His) are more essential for the exocuticle. Functional analysis suggested that BmorCPAP1-H is involved in cuticle formation. This study not only offers an in-depth understanding of cuticle morphology and protein components but also facilitates the elucidation of molecular mechanisms underlying cuticle formation in future studies.


Assuntos
Bombyx , Animais , Bombyx/genética , Bombyx/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Pupa/genética , Pupa/metabolismo , Transcriptoma
7.
J Anim Breed Genet ; 138(3): 278-290, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33044783

RESUMO

Breeding or genetic improvement refers to the process of artificial selection following domestication; as such, it has had a major influence on modern agriculture and animal production. Improvement generally focuses on traits that greatly affect the economic performance. Therefore, understanding the genetic basis underlying improvement will contribute to the identification of genes controlling economic traits and will facilitate future crop and animal breeding. However, genome-wide study of the molecular basis underlying improvement remains rare. The silkworm is a unique, entirely domesticated economically important invertebrate; genetic improvement has had a huge effect on the silkworm regarding silk-related traits. Herein, we performed whole-genomic sequencing on local and genetically improved silkworm lines to identify the genomic regions under strong selection in silkworm breeding/improvement. By genomic-wide selective sweeping analysis, we identified 24 genomic regions with strong selection signals, eight of which contained 13 candidate genes underlying silkworm breeding. Interestingly, six of these genes were annotated with functions related to neural signal response. Among the six genes, BGIBMGA004050 encodes silkworm CREB-regulated_transcription_coactivator_1 (BmCRTC1), which was reported to be involved in energy-sensing pathways. These results suggested that improvement may have affected the nervous system of the silkworm. This research will provide new insights into the genetic basis underlying the genetic improvement of silkworms and possibly of other species.


Assuntos
Bombyx , Genoma , Animais , Bombyx/genética , Domesticação , Estudo de Associação Genômica Ampla/veterinária , Genômica , Seleção Genética
8.
BMC Genomics ; 21(1): 740, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33096977

RESUMO

BACKGROUND: Understanding the genetic basis of phenotype variations during domestication and breeding is of great interest. Epigenetics and epigenetic modification enzymes (EMEs) may play a role in phenotypic variations; however, no comprehensive study has been performed to date. Domesticated silkworm (Bombyx mori) may be utilized as a model in determining how EMEs influence domestication traits. RESULTS: We identified 44 EMEs in the genome of silkworm (Bombyx mori) using homology searching. Phylogenetic analysis showed that genes in a subfamily among different animals were well clustered, and the expression pattern of EMEs is constant among Bombyx mori, Drosophila melanogaster, and Mus musculus. These are most highly expressed in brain, early embryo, and internal genitalia. By gene-related selective sweeping, we identified five BmEMEs under artificial selection during the domestication and breeding of silkworm. Among these selected genes, BmSuv4-20 and BmDNMT2 harbor selective mutations in their upstream regions that alter transcription factor-binding sites. Furthermore, these two genes are expressed higher in the testis and ovary of domesticated silkworm compared to wild silkworms, and correlations between their expression pattern and meiosis of the sperm and ova were observed. CONCLUSIONS: The domestication of silkworm has induced artificial selection on epigenetic modification markers that may have led to phenotypic changes during domestication. We present a novel perspective to understand the genetic basis underlying animal domestication and breeding.


Assuntos
Bombyx , Animais , Bombyx/genética , Domesticação , Drosophila melanogaster , Epigênese Genética , Feminino , Masculino , Camundongos , Filogenia
9.
Genome ; 61(3): 167-176, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29505281

RESUMO

Very long chain fatty acids (VLCFAs), such as sphingolipids, are components of cellular lipids, which are essential for cell proliferation. Mutations in the genes that encode proteins participating in VLCFA biosynthesis may cause inherited diseases, such as macular degeneration. Elongases of very long chain fatty acid (ELOVL) are enzymes that are involved in the biosynthesis of VLCFAs. Here, a total of 13 ELOVL genes, distributed across three chromosomes, were identified in the silkworm genome; all the ELOVL members contain a distinct ELO domain and a conserved HXXHH motif. Phylogenetic reconstruction was performed to analyze the evolutionary relationships among different species and to predict gene functions. The 13 ELOVL genes were assigned to the ELOVL3/6, ELOVL1/7, and ELOVL4 clades. Microarray and semiquantitative PCR analyses indicated that these genes are differentially expressed among various tissues, in turn suggesting functional divergence in the growth and development of each tissue. Further investigation showed that the expression level of the BGIBMGA000424 gene is significantly negatively correlated with the cocoon-shell weight among different silkworm strains. Taken together, the present study is the first comprehensive analysis of ELOVL genes in silkworm, and the results may serve as a foundation for further analysis of the physiological functions of ELOVL genes in silkworm.


Assuntos
Acetiltransferases/genética , Bombyx/genética , Genoma de Inseto , Proteínas de Insetos/genética , Acetiltransferases/química , Acetiltransferases/metabolismo , Animais , Bombyx/enzimologia , Sequência Conservada , Evolução Molecular , Elongases de Ácidos Graxos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Domínios Proteicos
10.
Pestic Biochem Physiol ; 148: 111-115, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891361

RESUMO

Insect cuticle acts as a primary protective barrier against environment stresses that may directly impact the insect body. Here, we report the mechanical defense function of a structural cuticular protein, BmorCPH24, to environmental stresses using a silkworm Bamboo (Bo) mutant with this gene mutation. Ultraviolet (UV) irradiation and topical application of an acetone insecticide were used as environmental stresses to determine the differences in susceptibility between Bo and wild-type larvae. UV irradiation resulted in a sunburn phenotype in the Bo strains earlier than the wild-type indicating the sensitivity of Bo. Higher malondialdehyde (MDA) content and a lower survival ratio were also observed in the Bo strains. Treatment with deltamethrin revealed that Bo larvae were more sensitive to insecticides than the wild-type. Furthermore, cuticle analysis by microsection revealed thinner cuticle and a significant decrease in the endocuticle layer (∼64.0%) in Bo. These results suggest that BmorCPH24 mutation can lead to deficiency in resources required to construct the cuticle in Bo resulting in thin cuticle and reduced resistance to UV and insecticides. These results provide us new insight into the role of structural cuticular proteins in insect cuticle against environment stresses.


Assuntos
Escamas de Animais/metabolismo , Bombyx/fisiologia , Exposição Ambiental , Proteínas de Insetos/genética , Inseticidas/farmacologia , Mutação , Nitrilas/farmacologia , Piretrinas/farmacologia , Raios Ultravioleta , Acetona/química , Animais , Bombyx/efeitos dos fármacos , Bombyx/genética , Bombyx/efeitos da radiação , Genes de Insetos , Inseticidas/química , Larva/efeitos dos fármacos , Larva/efeitos da radiação , Malondialdeído/metabolismo , Estresse Fisiológico
11.
Int J Mol Sci ; 19(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561793

RESUMO

The tyrosine kinases (TKs) are important parts of metazoan signaling pathways and play significant roles in cell growth, development, apoptosis and disease. Genome-wide characterization of TKs has been conducted in many metazoans, however, systematic information about this family in Lepidoptera is still lacking. We retrieved 33 TK-encoding genes in silkworm and classified them into 25 subfamilies by sequence analysis, without members in AXL, FRK, PDGFR, STYK1 and TIE subfamilies. Although domain sequences in each subfamily are conserved, TKs in vertebrates tend to be remarkably conserved and stable. Our results of phylogenetic analysis supported the previous conclusion for the second major expansion of TK family. Gene-Ontology (GO) analysis revealed that a higher proportion of BmTKs played roles in binding, catalysis, signal transduction, metabolism, biological regulation and response to stimulus, compared to all silkworm genes annotated in GO. Moreover, the expression profile analysis of BmTKs among multiple tissues and developmental stages demonstrated that many genes exhibited stage-specific and/or sex-related expression during embryogenesis, molting and metamorphosis, and that 8 BmTKs presented tissue-specific high expression. Our study provides systematic description of silkworm tyrosine kinases, and may also provide further insights into metazoan TKs and assist future studies addressing their functions.


Assuntos
Bombyx/enzimologia , Bombyx/genética , Genoma de Inseto , Proteínas Tirosina Quinases/genética , Animais , Cromossomos/genética , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Insetos , Proteínas de Insetos/genética , Família Multigênica , Filogenia , Proteínas Tirosina Quinases/metabolismo , Fatores de Tempo
12.
Int J Mol Sci ; 19(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29425159

RESUMO

WD40 proteins are scaffolding molecules in protein-protein interactions and play crucial roles in fundamental biological processes. Genome-wide characterization of WD40 proteins in animals has been conducted solely in humans. We retrieved 172 WD40 protein genes in silkworm (BmWD40s) and identified these genes in 7 other insects, 9 vertebrates and 5 nematodes. Comparative analysis revealed that the WD40 protein gene family underwent lineage-specific expansions during animal evolution, but did not undergo significant expansion during insect evolution. The BmWD40s were categorized into five clusters and 12 classes according to the phylogenetic classification and their domain architectures, respectively. Sequence analyses indicated that tandem and segmental duplication played minor roles in producing the current number of BmWD40s, and domain recombination events of multi-domain BmWD40s might have occurred mainly after gene duplication events. Gene Ontology (GO) analysis revealed that a higher proportion of BmWD40s was involved in processes, such as binding, transcription-regulation and cellular component biogenesis, compared to all silkworm genes annotated in GO. Microarray-based analysis demonstrated that many BmWD40s had tissue-specific expression and exhibited high and/or sex-related expression during metamorphosis. These findings contribute to a better understanding of the evolution of the animal WD40 protein family and assist the study of the functions of BmWD40s.


Assuntos
Bombyx/genética , Genoma de Inseto , Proteínas de Insetos/genética , Repetições WD40 , Animais , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo
13.
Int J Mol Sci ; 19(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467288

RESUMO

Silk is an important natural fiber of high economic value, and thus genetic study of the silkworm is a major area of research. Transcriptome analysis can provide guidance for genetic studies of silk yield traits. In this study, we performed a transcriptome comparison using multiple silkworms with different silk yields. A total of 22 common differentially expressed genes (DEGs) were identified in multiple strains and were mainly involved in metabolic pathways. Among these, seven significant common DEGs were verified by quantitative reverse transcription polymerase chain reaction, and the results coincided with the findings generated by RNA sequencing. Association analysis showed that BGIBMGA003330 and BGIBMGA005780 are significantly associated with cocoon shell weight and encode uridine nucleosidase and small heat shock protein, respectively. Functional annotation of these genes suggest that these play a role in silkworm silk gland development or silk protein synthesis. In addition, we performed principal component analysis (PCA) in combination with wild silkworm analysis, which indicates that modern breeding has a stronger selection effect on silk yield traits than domestication, and imply that silkworm breeding induces aggregation of genes related to silk yield.


Assuntos
Bombyx/genética , Proteínas de Insetos/genética , Larva/genética , Seda/genética , Transcriptoma , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Domesticação , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Análise de Componente Principal , Seda/biossíntese
14.
Int J Mol Sci ; 19(10)2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30322193

RESUMO

In insects, the integument provides mechanical support for the whole body and protects them from infections, physical and chemical injuries, and dehydration. Diversity in integument properties is often related to body shape, behavior, and survival rate. The stick (sk) silkworm is a spontaneous mutant with a stick-like larval body that is firm to the touch and, thus, less flexible. Analysis of the mechanical properties of the cuticles at day 3 of the fifth instar (L5D3) of sk larvae revealed higher storage modulus and lower loss tangent. Transcriptome sequencing identified a total of 19,969 transcripts that were expressed between wild-type Dazao and the sk mutant at L5D2, of which 11,596 transcripts were novel and detected in the integument. Differential expression analyses identified 710 upregulated genes and 1009 downregulated genes in the sk mutant. Gene Ontology (GO) enrichment analysis indicated that four chitin-binding peritrophin A domain genes and a chitinase gene were upregulated, whereas another four chitin-binding peritrophin A domain genes, a trehalase, and nine antimicrobial peptides were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that two functional pathways, namely, fructose and mannose metabolism and tyrosine metabolism, were significantly enriched with differentially-expressed transcripts. This study provides a foundation for understanding the molecular mechanisms underlying the development of the stiff exoskeleton in the sk mutant.


Assuntos
Bombyx/anatomia & histologia , Perfilação da Expressão Gênica/métodos , Proteínas de Insetos/genética , Mutação , Animais , Bombyx/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Tegumento Comum/anatomia & histologia , Fenótipo , Análise de Sequência de RNA
15.
Mol Genet Genomics ; 292(1): 243-250, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27853884

RESUMO

Helentrons represent a novel subtype of Helitrons. However, the evolutionary history of Helentrons in organisms is not clearly understood. In this study, we performed structure and autonomous partner analyses, which revealed that bm_455, a TE obtained from the Bombyx mori TE database, BmTEdb, was a member of Helentrons but not a long-terminal repeat (LTR) retrotransposon. Further analyses showed that bm_455 was also present in a wide range of insects including lepidopterans, coleopterans and hymenopterans using a homology-based search strategy. Several lines of evidence (high sequence identity, discontinuous distribution and lack of intense purifying selection) suggested that these elements could have been transferred into these species in part by horizontal transfers (HTs). Because Helentrons can capture host gene fragments, HTs of Helentrons might have a huge impact on their host genome evolution.


Assuntos
Bombyx/genética , Elementos de DNA Transponíveis , Transferência Genética Horizontal , Animais , Genoma , Insetos/genética , Filogenia
16.
Mol Biol Evol ; 31(12): 3302-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25213334

RESUMO

Although there are many studies to show a key role of transposable elements (TEs) in adaptive evolution of higher organisms, little is known about the molecular mechanisms. In this study, we found that a partial TE (Taguchi) inserted in the cis-regulatory region of the silkworm ecdysone oxidase (EO) gene, which encodes a crucial enzyme to reduce the titer of molting hormone (20-hydroxyecdysone, 20E). The TE insertion occurred during domestication of silkworm and the frequency of the TE insertion in the domesticated silkworm (Bombyx mori) is high, 54.24%. The linkage disequilibrium in the TE inserted strains of the domesticated silkworm was elevated. Molecular population genetics analyses suggest that this TE insertion is adaptive for the domesticated silkworm. Luminescent reporter assay shows that the TE inserted in the cis-regulatory region of the EO gene functions as a 20E-induced enhancer of the gene expression. Further, phenotypic bioassay indicates that the silkworm with the TE insertion exhibited more stable developmental phenotype than the silkworm without the TE insertion when suffering from food shortage. Thus, the inserted TE in the cis-regulatory region of the EO gene increased developmental uniformity of silkworm individuals through regulating 20E metabolism, partially explaining transformation of a domestication developmental trait in the domesticated silkworm. Our results emphasize the exceptional role of gene expression regulation in developmental transition of domesticated animals.


Assuntos
3-Hidroxiesteroide Desidrogenases/genética , Bombyx/genética , Elementos de DNA Transponíveis , Proteínas de Insetos/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Região 5'-Flanqueadora , Animais , Bombyx/enzimologia , Ecdisterona/biossíntese , Evolução Molecular , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Desequilíbrio de Ligação , Mutagênese Insercional , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA
17.
BMC Evol Biol ; 14: 185, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25123546

RESUMO

BACKGROUND: Gene flow plays an important role in domestication history of domesticated species. However, little is known about the demographic history of domesticated silkworm involving gene flow with its wild relative. RESULTS: In this study, four model-based evolutionary scenarios to describe the demographic history of B. mori were hypothesized. Using Approximate Bayesian Computation method and DNA sequence data from 29 nuclear loci, we found that the gene flow at bottleneck model is the most likely scenario for silkworm domestication. The starting time of silkworm domestication was estimated to be approximate 7,500 years ago; the time of domestication termination was 3,984 years ago. Using coalescent simulation analysis, we also found that bi-directional gene flow occurred during silkworm domestication. CONCLUSIONS: Estimates of silkworm domestication time are nearly consistent with the archeological evidence and our previous results. Importantly, we found that the bi-directional gene flow might occur during silkworm domestication. Our findings add a dimension to highlight the important role of gene flow in domestication of crops and animals.


Assuntos
Bombyx/genética , Fluxo Gênico , Animais , Teorema de Bayes , Evolução Biológica , Bombyx/fisiologia , Genoma de Inseto , Seleção Genética
18.
BMC Genomics ; 15: 251, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24684762

RESUMO

BACKGROUND: Copy number variations (CNVs), which are important source for genetic and phenotypic variation, have been shown to be associated with disease as well as important QTLs, especially in domesticated animals. However, little is known about the CNVs in silkworm. RESULTS: In this study, we have constructed the first CNVs map based on genome-wide analysis of CNVs in domesticated silkworm. Using next-generation sequencing as well as quantitative PCR (qPCR), we identified ~319 CNVs in total and almost half of them (~ 49%) were distributed on uncharacterized chromosome. The CNVs covered 10.8 Mb, which is about 2.3% of the entire silkworm genome. Furthermore, approximately 61% of CNVs directly overlapped with SDs in silkworm. The genes in CNVs are mainly related to reproduction, immunity, detoxification and signal recognition, which is consistent with the observations in mammals. CONCLUSIONS: An initial CNVs map for silkworm has been described in this study. And this map provides new information for genetic variations in silkworm. Furthermore, the silkworm CNVs may play important roles in reproduction, immunity, detoxification and signal recognition. This study provided insight into the evolution of the silkworm genome and an invaluable resource for insect genomics research.


Assuntos
Bombyx/genética , Variações do Número de Cópias de DNA , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Duplicações Segmentares Genômicas
19.
Pest Manag Sci ; 80(2): 376-387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37698372

RESUMO

BACKGROUND: The reproductive system plays a crucial role in insect survival, reproduction and species specificity. Understanding the molecular mechanisms underlying reproductive organogenesis contributes to improving the efficiency of sterile insect technique marked by an eco-friendly pest management strategy. Lepidoptera is one of the largest orders of insects, most of which are major pests in agriculture and forestry. Our study aimed to screen the genes responsible for reproductive organogenesis and unravel the mechanism underlying female reproductive organ defects. RESULTS: Morphological investigation of female reproductive organs showed a defective connection between oviductus geminus and oviductus communis on the second day of pupa (P2) in Speckled mutant silkworm. RNA_Seq identified a total of 18 049 transcripts that were expressed in the P2 female internal reproductive organs without ovary in Spc/+ compared to +Spc /+Spc . Differential expression analysis identified 312 up-regulated genes and 221 down-regulated genes in Spc/+. KEGG analysis identified 44 significantly enriched pathways. The results of qRT-PCR performed on 33 genes significantly matched the outcomes of the RNA_Seq. Dysfunction of Cyclin B3 resulted in a defective connection of the oviductus communis with the ovariole, dysfunction of oogenesis, and a petite body. Moreover, homozygous recessive lethality of Cyclin B3/Cyclin B3 occurred during early embryogenesis. CONCLUSION: Our results suggest that Cyclin B3 is a pleiotropic functional gene that regulates early embryogenesis, oogenesis, development, and female reproductive organogenesis. These results showed that Cyclin B3 has significant effects on lepidopteran mortality, growth, and reproductive physiology, which might be considered a novel and potentially eco-friendly target for lepidopteran pest management. © 2023 Society of Chemical Industry.


Assuntos
Bombyx , Animais , Feminino , Bombyx/genética , Desenvolvimento Embrionário/genética , Reprodução , Organogênese , Ciclinas , RNA , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
20.
Sci Adv ; 10(25): eadm9851, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896616

RESUMO

Lepidoptera, the most diverse group of insects, exhibit female heterogamy (Z0 or ZW), which is different from most other insects (male heterogamy, XY). Previous studies suggest a single origin of the Z chromosome. However, the origin of the lepidopteran W chromosome remains poorly understood. Here, we assemble the genome from females down to the chromosome level of a model insect (Bombyx mori) and identify a W chromosome of approximately 10.1 megabase using a newly developed tool. In addition, we identify 3593 genes that were not previously annotated in the genomes of B. mori. Comparisons of 21 lepidopteran species (including 17 ZW and four Z0 systems) and three trichopteran species (Z0 system) reveal that the formation of Ditrysia W involves multiple mechanisms, including previously proposed canonical and noncanonical models, as well as a newly proposed mechanism called single-Z turnover. We conclude that there are multiple independent origins of the W chromosome in the Ditrysia (most moths and all butterflies) of Lepidoptera.


Assuntos
Borboletas , Cromossomos de Insetos , Mariposas , Cromossomos Sexuais , Animais , Feminino , Borboletas/genética , Cromossomos Sexuais/genética , Mariposas/genética , Cromossomos de Insetos/genética , Evolução Molecular , Masculino , Genoma de Inseto , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA