Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Allergy ; 77(4): 1180-1191, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34601745

RESUMO

BACKGROUND: The administration of L-glutamine (Gln) suppresses allergic airway inflammation via the rapid upregulation of MAPK phosphatase (MKP)-1, which functions as a negative regulator of inflammation by deactivating p38 and JNK mitogen-activated protein kinases (MAPKs). However, the role of endogenous Gln remains to be elucidated. Therefore, we investigated the mechanism by which endogenous Gln regulates MKP-1 induction and allergic airway inflammation in an ovalbumin-based murine asthma model. METHODS: We depleted endogenous Gln levels using L-γ-glutamyl-p-nitroanilide (GPNA), an inhibitor of the Gln transporter ASCT2 and glutamine synthetase small interfering siRNA. Lentivirus expressing MKP-1 was injected to achieve overexpression of MKP-1. Asthmatic phenotypes were assessed using our previously developed ovalbumin-based murine model, which is suitable for examining sequential asthmatic events, including neutrophil infiltration. Gln levels were analyzed using a Gln assay kit. RESULTS: GPNA or glutamine synthetase siRNA successfully depleted endogenous Gln levels. Importantly, homeostatic MKP-1 induction did not occur at all, which resulted in prolonged p38 MAPK and cytosolic phospholipase A2 (cPLA2 ) phosphorylation in Gln-deficient mice. Gln deficiency augmented all examined asthmatic reactions, but it exhibited a strong bias toward increasing the neutrophil count, which was not observed in MKP-1-overexpressing lungs. This neutrophilia was inhibited by a cPLA2 inhibitor and a leukotriene B4 inhibitor but not by dexamethasone. CONCLUSION: Gln deficiency leads to the impairment of MKP-1 induction and activation of p38 MAPK and cPLA2 , resulting in the augmentation of neutrophilic, more so than eosinophilic, airway inflammation.


Assuntos
Asma , Glutamina , Animais , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Glutamato-Amônia Ligase , Glutamina/farmacologia , Humanos , Inflamação , Pulmão/metabolismo , Camundongos , Ovalbumina , RNA Interferente Pequeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Anal Chem ; 93(2): 801-811, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33284604

RESUMO

An easily accessible colorimetric and fluorescence probe 4-((3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)benzenesulfonamide (4CBS) was successfully developed for the selective and sensitive detection of Sn2+ in an aqueous solution. The sensing mechanism involves reduction of -C═O into -C-OH groups in 4CBS upon the addition of Sn2+, which initiates the fluorescence turn-on mode. A better linear relationship was achieved between fluorescence intensity and Sn2+ concentration in the range of 0-62.5 µM, with a detection limit (LOD) of 0.115 µM. The binding mechanism of 4CBS for Sn2+ was confirmed by Fourier transform infrared analysis, NMR titrations, and mass (electrospray ionization) spectral analysis. Likewise, the proposed sensing mechanism was supported by quantum chemical calculations. Moreover, bioimaging studies demonstrated that the chemosensing probe 4CBS is an effective fluorescent marker for the detection of Sn2+ in living cells and zebrafish. Significantly, 4CBS was able to discriminate between Sn2+ in human cancer cells and Sn2+ in normal live cells.


Assuntos
Colorimetria/métodos , Sulfonamidas/síntese química , Estanho/química , Animais , Linhagem Celular , Técnicas Eletroquímicas , Humanos , Larva , Camundongos , Modelos Moleculares , Estrutura Molecular , Imagem Óptica , Sensibilidade e Especificidade , Sulfonamidas/química , Água , Peixe-Zebra
3.
J Biol Chem ; 292(8): 3290-3298, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28077574

RESUMO

Indoleamine 2,3-dioxygenase (IDO) mediates immune tolerance, and suppressor of cytokine signaling 3 (SOCS3) negatively regulates the JAK/STAT signal transduction pathway. We determined previously that platelet-activating factor (PAF) protects mice against LPS-induced endotoxic shock, but its detailed mechanism of action was unknown. We performed survival experiments in IDO+/+ and IDO-/- mice using an LPS-induced endotoxemia model and rated organ injury (neutrophil infiltration and liver function). Using ELISA and Western blotting, we also investigated the mechanism of PAF-mediated endotoxin tolerance during endotoxemia. PAF-mediated endotoxin tolerance was dependent on IDO in vivo and in vitro and was not observed in IDO-/- mice. JAK/STAT signaling, crucial for SOCS3 expression, was also impaired in the absence of IDO. In an IDO- and STAT-dependent manner, PAF mediated a decrease in IL-12 and a dramatic increase in IL-10 and reduced mouse mortality. In addition, PAF attenuated LPS-mediated neutrophil infiltration into the lungs and interactions between neutrophil-like (THP-1) and endothelial cells (human umbilical vein endothelial cells). These results indicate that PAF-mediated endotoxin tolerance is initiated via IDO- and JAK/STAT-dependent expression of SOCS3. Our study has revealed a novel tolerogenic mechanism of IDO action and an important association between IDO and SOCS3 with respect to endotoxin tolerance.


Assuntos
Citocinas/imunologia , Endotoxemia/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Fator de Ativação de Plaquetas/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/imunologia , Animais , Endotoxemia/patologia , Deleção de Genes , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Lipopolissacarídeos/imunologia , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/patologia , Fator de Transcrição STAT3/imunologia
4.
Exp Mol Pathol ; 101(1): 150-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27460275

RESUMO

Genome-wide association study in diffusely infiltrating type cholangiocarcinoma (CC) can be limited due to the difficulty of obtaining tumor tissue. We aimed to evaluate the genomic alterations of diffusely infiltrating type CC using next-generation sequencing (NGS) of bile and to compare the variations with those of mass-forming type CC. A total of 24 bile samples obtained during endoscopic retrograde cholangiopancreatography (ERCP) and 17 surgically obtained tumor tissue samples were evaluated. Buffy coat and normal tissue samples were used as controls for a somatic mutation analysis. After extraction of genomic DNA, NGS analysis was performed for 48 cancer related genes. There were 27 men and 14 women with a mean age of 65.0±11.8years. The amount of extracted genomic DNA from 3cm(3) of bile was 66.0±84.7µg and revealed a high depth of sequencing coverage. All of the patients had genomic variations, with an average number of 19.4±2.8 and 22.3±3.3 alterations per patient from the bile and tumor tissue, respectively. After filtering process, damaging SNPs (8 sites for each type of CC) were predicted by analyzing tools, and their target genes showed relevant differences between the diffusely infiltrating and mass-forming type CC. Finally, in somatic mutation analysis, tumor-normal paired 14 tissue and 6 bile samples were analyzed, genomic alterations of EGFR, FGFR1, ABL1, PIK3CA, and CDKN2A gene were seen in the diffusely infiltrating type CC, and TP53, KRAS, APC, GNA11, ERBB4, ATM, SMAD4, BRAF, and IDH1 were altered in the mass-forming type CC group. STK11, GNAQ, RB1, KDR, and SMO genes were revealed in both groups. The NGS analysis was feasible with bile sample and diffusely infiltrating type CC revealed genetic differences compared with mass-forming type CC. Genome-wide association study could be performed using bile sample in the patients with CC undergoing ERCP and a different genetic approach for accurate diagnosis, pathogenesis study, and targeted therapy will be needed in diffusely infiltrating type CC.


Assuntos
Bile/metabolismo , Colangiocarcinoma/genética , Genes Neoplásicos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA de Neoplasias/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Software
5.
J Biol Chem ; 289(23): 16362-73, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24759100

RESUMO

NAD glycohydrolases (NADases) catalyze the hydrolysis of NAD to ADP-ribose and nicotinamide. Although many members of the NADase family, including ADP-ribosyltransferases, have been cloned and characterized, the structure and function of NADases with pure hydrolytic activity remain to be elucidated. Here, we report the structural and functional characterization of a novel NADase from rabbit reticulocytes. The novel NADase is a glycosylated, glycosylphosphatidylinositol-anchored cell surface protein exclusively expressed in reticulocytes. shRNA-mediated knockdown of the NADase in bone marrow cells resulted in a reduction of erythroid colony formation and an increase in NAD level. Furthermore, treatment of bone marrow cells with NAD, nicotinamide, or nicotinamide riboside, which induce an increase in NAD content, resulted in a significant decrease in erythroid progenitors. These results indicate that the novel NADase may play a critical role in regulating erythropoiesis of hematopoietic stem cells by modulating intracellular NAD.


Assuntos
Eritropoese , Células-Tronco Hematopoéticas/metabolismo , NAD+ Nucleosidase/metabolismo , NAD/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , DNA Complementar , Glicosilação , Células HEK293 , Humanos , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NAD+ Nucleosidase/química , NAD+ Nucleosidase/genética , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Relação Estrutura-Atividade
6.
J Biol Chem ; 288(49): 35548-58, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24165120

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger for mobilizing Ca(2+) from intracellular stores in various cell types. Extracellular application of NAADP has been shown to elicit intracellular Ca(2+) signals, indicating that it is readily transported into cells. However, little is known about the functional role of this NAADP uptake system. Here, we show that NAADP is effectively transported into selected cell types involved in glucose homeostasis, such as adipocytes and pancreatic ß-cells, but not the acinar cells, in a high glucose-dependent manner. NAADP uptake was inhibitable by Ned-19, a NAADP mimic; dipyridamole, a nucleoside inhibitor; or NaN3, a metabolic inhibitor or under Ca(2+)-free conditions. Furthermore, NAADP was found to be released from pancreatic islets upon stimulation by high glucose. Consistently, administration of NAADP to type 2 diabetic mice improved glucose tolerance. We propose that NAADP is functioning as an autocrine/paracrine hormone important in glucose homeostasis. NAADP is thus a potential antidiabetic agent with therapeutic relevance.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , NADP/análogos & derivados , Animais , Comunicação Autócrina , Transporte Biológico Ativo , Sinalização do Cálcio , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Homeostase , Insulina/metabolismo , Cinética , Masculino , Camundongos , NADP/metabolismo , NADP/farmacologia , Comunicação Parácrina , Sistemas do Segundo Mensageiro
7.
Stem Cells ; 31(6): 1121-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23526681

RESUMO

Crosstalk between intracellular signaling pathways has been extensively studied to understand the pluripotency of human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells (hiPSCs); however, the contribution of NAD(+) -dependent pathways remains largely unknown. Here, we show that NAD(+) depletion by FK866 (a potent inhibitor of NAD(+) biosynthesis) was fatal in hPSCs, particularly when deriving pluripotent cells from somatic cells and maintaining pluripotency. NAD and its precursors (nicotinamide [NAM] and nicotinic acid) fully replenished the NAD(+) depletion by FK866 in hPSCs. However, only NAM effectively enhanced the reprogramming efficiency and kinetics of hiPSC generation and was also significantly advantageous for the maintenance of undifferentiated hPSCs. Our molecular and functional studies reveal that NAM lowers the barriers to reprogramming by accelerating cell proliferation and protecting cells from apoptosis and senescence by alleviating oxidative stress, reactive oxygen species accumulation, and subsequent mitochondrial membrane potential collapse. We provide evidence that the positive effects of NAM (occurring at concentrations well above the physiological range) on pluripotency control are molecularly associated with the repression of p53, p21, and p16. Our findings establish that adequate intracellular NAD(+) content is crucial for pluripotency; the distinct effects of NAM on pluripotency may be dependent not only on its metabolic advantage as a NAD(+) precursor but also on the ability of NAM to enhance resistance to cellular stress.


Assuntos
Reprogramação Celular/genética , Niacinamida/genética , Niacinamida/metabolismo , Células-Tronco Pluripotentes/metabolismo , Apoptose/genética , Linhagem Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cinética , Potencial da Membrana Mitocondrial/genética , NAD/genética , NAD/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Niacina/genética , Niacina/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123908, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330753

RESUMO

An aminophenol-linked naphthoquinone-based fluorometric and colorimetric chemosensor 2-chloro-3-((3-hydroxyphenyl) amino) naphthalene-1,4-dione (2CAN-Dione) was synthesized for selective detection of Sn2+ ion in aqueous solution. The amine and conversion of carbonyl into carboxyl groups play a vital role in the sensing mechanism when Sn2+ is added to 2CAN-Dione. Comprehensive characterization of the sensor was carried out using standard spectral and analytical approaches. Because of the intramolecular charge transfer (ICT) effect and the turn-on sensing mode, the strong fluorometric emission towards Sn2+ was observed at about 435 nm. The chemosensor exhibited good selectivity for Sn2+ in the presence of coexisting metal ions. An improved linear connection was established with a low limit of detection (0.167 µM). FT-IR, 1H NMR, 13C NMR, and quantum chemistry methods were performed to verify the binding coordination mechanism. The chemosensing probe 2CAN-Dione was successfully employed in bioimaging investigations, demonstrating that it is a reliable fluorescent marker for Sn2+ in human cancer cells.

9.
J Biol Chem ; 287(18): 14502-14, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22396532

RESUMO

Phagocytosis is a crucial event in the immune system that allows cells to engulf and eliminate pathogens. This is mediated through the action of immunoglobulin (IgG)-opsonized microbes acting on Fcγ receptors (FcγR) on macrophages, which results in sustained levels of intracellular Ca(2+) through the mobilization of Ca(2+) second messengers. It is known that the ADP-ribosyl cyclase is responsible for the rise in Ca(2+) levels after FcγR activation. However, it is unclear whether and how CD38 is involved in FcγR-mediated phagocytosis. Here we show that CD38 is recruited to the forming phagosomes during phagocytosis of IgG-opsonized particles and produces cyclic-ADP-ribose, which acts on ER Ca(2+) stores, thus allowing an increase in FcγR activation-mediated phagocytosis. Ca(2+) data show that pretreatment of J774A.1 macrophages with 8-bromo-cADPR, ryanodine, blebbistatin, and various store-operated Ca(2+) inhibitors prevented the long-lasting Ca(2+) signal, which significantly reduced the number of ingested opsonized particles. Ex vivo data with macrophages extracted from CD38(-/-) mice also shows a reduced Ca(2+) signaling and phagocytic index. Furthermore, a significantly reduced phagocytic index of Mycobacterium bovis BCG was shown in macrophages from CD38(-/-) mice in vivo. This study suggests a crucial role of CD38 in FcγR-mediated phagocytosis through its recruitment to the phagosome and mobilization of cADPR-induced intracellular Ca(2+) and store-operated extracellular Ca(2+) influx.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Macrófagos Peritoneais/metabolismo , Glicoproteínas de Membrana/metabolismo , Fagocitose/fisiologia , Receptores de IgG/metabolismo , ADP-Ribosil Ciclase 1/genética , Animais , Linhagem Celular , ADP-Ribose Cíclica/genética , ADP-Ribose Cíclica/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mycobacterium bovis/metabolismo , Receptores de IgG/genética
10.
J Immunol ; 186(11): 6625-32, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21531890

RESUMO

Platelet-activating factor (PAF) is a major mediator in the induction of fatal hypovolemic shock in murine anaphylaxis. This PAF-mediated effect has been reported to be associated with PI3K/Akt-dependent eNOS-derived NO. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is phosphatidylinositol phosphate phosphatase, which negatively controls PI3K by dephosphorylating the signaling lipid, phosphatidylinositol 3,4,5-triphosphate. In this study, we examined the possible involvement of PTEN in PAF-mediated anaphylactic shock. Induction of anaphylaxis or PAF injection resulted in a rapid decrease in PTEN activity, followed by increases in PI3K activity and phosphorylation of Akt and eNOS. Systemic administration of adenoviruses carrying PTEN cDNA (adenoviral PTEN), but not the control AdLacZ, not only attenuated anaphylactic symptoms, but also reversed anaphylaxis- or PAF-induced changes in PTEN and PI3K activities, as well as phosphorylation of Akt and eNOS. We found that the decreased PTEN activity was associated with PTEN phosphorylation, the latter effect being prevented by the protein kinase CK2 inhibitor, DMAT. DMAT also inhibited anaphylactic symptoms as well as the anaphylaxis- or PAF-mediated PTEN/PI3K/Akt/eNOS signaling cascade. CK2 activity was increased by PAF. The present data provide, as the key mechanism underlying anaphylactic shock, PAF triggers the upstream pathway CK2/PTEN, which ultimately leads to the activation of PI3K/Akt/eNOS. Therefore, CK2/PTEN may be a potent target in the control of anaphylaxis and other many PAF-mediated pathologic conditions.


Assuntos
Anafilaxia/metabolismo , Caseína Quinase II/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Anafilaxia/induzido quimicamente , Anafilaxia/patologia , Animais , Benzimidazóis/farmacologia , Western Blotting , Caseína Quinase II/antagonistas & inibidores , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fator de Ativação de Plaquetas , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
BMB Rep ; 56(5): 314-319, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37013347

RESUMO

Sepsis is a life-threatening multi-organ dysfunction with high mortality caused by the body's improper response to microbial infection. No new effective therapy has emerged that can adequately treat patients with sepsis. We previously demonstrated that interferon-ß (IFN-ß) protects against sepsis via sirtuin 1-(SIRT1)-mediated immunosuppression. Another study also reported its significant protective effect against acute respiratory distress syndrome, a complication of severe sepsis, in human patients. However, the IFN-ß effect cannot solely be explained by SIRT1-mediated immunosuppression, since sepsis induces immunosuppression in patients. Here, we show that IFN-ß, in combination with nicotinamide riboside (NR), alleviates sepsis by blocking endothelial damage via SIRT1 activation. IFN-ß plus NR protected against cecal ligation puncture-(CLP)-induced sepsis in wild-type mice, but not in endothelial cell-specific Sirt1 knockout (EC-Sirt1 KO) mice. IFN-ß upregulated SIRT1 protein expression in endothelial cells in a protein synthesisindependent manner. IFN-ß plus NR reduced the CLP-induced increase in in vivo endothelial permeability in wild-type, but not EC-Sirt1 KO mice. IFN-ß plus NR suppressed lipopolysaccharide-induced up-regulation of heparinase 1, but the effect was abolished by Sirt1 knockdown in endothelial cells. Our results suggest that IFN-ß plus NR protects against endothelial damage during sepsis via activation of the SIRT1/heparinase 1 pathway. [BMB Reports 2023; 56(5): 314-319].


Assuntos
Sepse , Sirtuína 1 , Humanos , Animais , Camundongos , Sirtuína 1/metabolismo , Interferon beta , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Heparina Liase , Sepse/tratamento farmacológico , Sepse/metabolismo , Camundongos Endogâmicos C57BL
12.
J Biol Chem ; 286(52): 44480-90, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22033928

RESUMO

The ADP-ribosyl cyclase CD38 whose catalytic domain resides in outside of the cell surface produces the second messenger cyclic ADP-ribose (cADPR) from NAD(+). cADPR increases intracellular Ca(2+) through the intracellular ryanodine receptor/Ca(2+) release channel (RyR). It has been known that intracellular NAD(+) approaches ecto-CD38 via its export by connexin (Cx43) hemichannels, a component of gap junctions. However, it is unclear how cADPR extracellularly generated by ecto-CD38 approaches intracellular RyR although CD38 itself or nucleoside transporter has been proposed to import cADPR. Moreover, it has been unknown what physiological stimulation can trigger Cx43-mediated export of NAD(+). Here we demonstrate that Cx43 hemichannels, but not CD38, import cADPR to increase intracellular calcium through RyR. We also demonstrate that physiological stimulation such as Fcγ receptor (FcγR) ligation induces calcium mobilization through three sequential steps, Cx43-mediated NAD(+) export, CD38-mediated generation of cADPR and Cx43-mediated cADPR import in J774 cells. Protein kinase A (PKA) activation also induced calcium mobilization in the same way as FcγR stimulation. FcγR stimulation-induced calcium mobilization was blocked by PKA inhibition, indicating that PKA is a linker between FcγR stimulation and NAD(+)/cADPR transport. Cx43 knockdown blocked extracellular cADPR import and extracellular cADPR-induced calcium mobilization in J774 cells. Cx43 overexpression in Cx43-negative cells conferred extracellular cADPR-induced calcium mobilization by the mediation of cADPR import. Our data suggest that Cx43 has a dual function exporting NAD(+) and importing cADPR into the cell to activate intracellular calcium mobilization.


Assuntos
Cálcio/metabolismo , Conexina 43/metabolismo , ADP-Ribose Cíclica/metabolismo , NAD/metabolismo , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Conexina 43/genética , ADP-Ribose Cíclica/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , NAD/genética , Receptores de IgG/genética , Receptores de IgG/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
13.
Biochem Biophys Res Commun ; 419(2): 206-10, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22330808

RESUMO

As the increased acetylation of p65 is linked to nuclear factor-κB (NF-κB) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-κB p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-κB during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-κB p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-κB through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Túbulos Renais Proximais/efeitos dos fármacos , Sirtuína 1/biossíntese , Fator de Transcrição RelA/metabolismo , Acetilação , Antioxidantes/farmacologia , Carbazóis/farmacologia , Linhagem Celular , Resistencia a Medicamentos Antineoplásicos , Humanos , Túbulos Renais Proximais/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Resveratrol , Sirtuína 1/antagonistas & inibidores , Estilbenos/farmacologia
14.
Am J Physiol Renal Physiol ; 301(2): F427-35, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21593185

RESUMO

Nephrotoxicity is one of the important dose-limiting factors during cisplatin treatment. There is a growing body of evidence that activation of p53 has a critical role in cisplatin-induced renal apoptotic injury. The nicotinamide adenine dinucleotide-dependent protein deacetylase SIRT1 decreases apoptosis through deacetylating of p53, and resveratrol is known as an activator of SIRT1. To study the role of SIRT1 in cisplatin-induced renal injury through interaction with p53, mouse proximal tubular cells (MPT) were treated with cisplatin and examined the expression level of SIRT1, acetylation of p53, PUMA-α, Bax, the cytosolic/mitochondrial cytochrome c ratio, and active caspase-3. The expression of SIRT1 was decreased by cisplatin. Resveratrol, a SIRT1 activator, ameliorated cisplatin-induced acetylation of p53, apoptosis, and cytotoxicity in MPT cells. In addition, resveratrol remarkably blocked cisplatin-induced decrease of Bcl-xL in MPT cells. Further specific SIRT1 inhibition with EX 527 or small interference RNA specific to SIRT1 reversed the effect of resveratrol on cisplatin-induced toxicity. Inhibition of p53 by pifithrin-α reversed the effect of EX527 in protein expression of PUMA-α, Bcl-xL, and caspase-3 and cytotoxicity in MPT cells. SIRT1 protein expression after cisplatin treatment was significantly decreased in the kidney. SIRT1 activation by resveratrol decreased cisplatin-induced apoptosis while improving the glomerular filtration rate. Taken together, our findings suggest that the modulation of p53 by SIRT1 could be a possible target to attenuate cisplatin-induced kidney injury.


Assuntos
Injúria Renal Aguda/enzimologia , Antineoplásicos/efeitos adversos , Antioxidantes/farmacologia , Cisplatino/efeitos adversos , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Acetilação/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Animais , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Carbazóis , Caspase 3/metabolismo , Ativação Enzimática/efeitos dos fármacos , Receptor Celular 1 do Vírus da Hepatite A , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/enzimologia , Masculino , Proteínas de Membrana/urina , Camundongos , Camundongos Endogâmicos C57BL , Resveratrol , Transdução de Sinais , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/efeitos dos fármacos , Estilbenos/uso terapêutico , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
15.
J Allergy Clin Immunol ; 125(2): 449-460.e14, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19864008

RESUMO

BACKGROUND: Bronchial asthma is a chronic inflammatory disorder of the airways characterized by increased expression of multiple inflammatory genes. Acetylation of histones by histone acetyltransferases is associated with increased gene transcription, whereas hypoacetylation induced by histone deacetylases is associated with suppression of gene expression. Sirtuin 1 (SIRT1) is a member of the silent information regulator 2 family that belongs to class III histone deacetylase. OBJECTIVE: This study aimed to investigate the role of SIRT1 and the related molecular mechanisms in the pathogenesis of allergic airway disease. METHODS: By using a murine model of ovalbumin (OVA)-induced allergic airway disease and murine tracheal epithelial cells, this study investigated the involvement of SIRT1 and its signaling networks in allergic airway inflammation and hyperresponsiveness. RESULTS: In this study with mice after inhalation of OVA, the increased levels of SIRT1, hypoxia-inducible factor 1alpha (HIF-1alpha), and vascular endothelial growth factor protein in the lungs after OVA inhalation were decreased substantially by the administration of a SIRT1 inhibitor, sirtinol. We also showed that the administration of sirtinol reduced significantly the increased numbers of inflammatory cells of the airways; airway hyperresponsiveness; increased levels of IL-4, IL-5, and IL-13; and increased vascular permeability in the lungs after OVA inhalation. In addition, we have found that inhibition of SIRT1 reduced OVA-induced upregulation of HIF-1alpha in airway epithelial cells. CONCLUSIONS: These results indicate that inhibition of SIRT1 might attenuate antigen-induced airway inflammation and hyperresponsiveness through the modulation of vascular endothelial growth factor expression mediated by HIF-1alpha in mice.


Assuntos
Asma/metabolismo , Pneumonia/metabolismo , Hipersensibilidade Respiratória/metabolismo , Sirtuína 1/metabolismo , Alérgenos/imunologia , Animais , Benzamidas/farmacologia , Western Blotting , Expressão Gênica , Perfilação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Naftóis/farmacologia , Ovalbumina/imunologia , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Stem Cells Dev ; 30(21): 1082-1091, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34514853

RESUMO

Mucin 1 (MUC1) is a transmembrane glycoprotein overexpressed in several cancer cells in which it regulates cell surface properties, tumor invasion, and cell death. Recently, we reported that MUC1-C, the C-terminal subunit of MUC1, is involved in the growth of mouse embryonic stem (ES) cells. However, the functional significance of MUC1-C in human ES cells remains unclear. In this study, we investigated the expression and function of MUC1-C in human ES cells. Based on reverse transcription-polymerase chain reaction, western blotting, and confocal microscopy following immunostaining, undifferentiated human ES cells expressed MUC1-C and the expression level decreased during differentiation. Inhibition of MUC1-C, by the peptide inhibitor GO201 that targets the cytoplasmic domain of MUC1-C (MUC1-CD), reduced cell proliferation and OCT4 protein expression, and promoted cell death. Moreover, the inhibition of MUC1-C increased the intracellular reactive oxygen species (ROS) levels and downregulated expression of glycolysis-related enzymes. These findings indicate that expression and function of MUC1-C are required for stem cell properties involved in cell proliferation, maintenance of pluripotency and optimal ROS levels, and a high glycolytic flux in human ES cells. In addition, forced overexpression of MUC1-CD increased the efficiency of reprogramming from fibroblast cells to induced pluripotent stem cells, suggesting that MUC1-C expression can contribute to the reprogramming process.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular/genética , Reprogramação Celular , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , Mucina-1/química , Mucina-1/genética , Mucina-1/metabolismo
17.
Int J Stem Cells ; 14(2): 180-190, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33122470

RESUMO

BACKGROUND AND OBJECTIVES: Embryonic stem (ES) cells have the capacity to self-renew and generate all types of cells. MUC1-C, a cytoplasmic subunit of MUC1, is overexpressed in various carcinomas and mediates signaling pathways to regulate intracellular metabolic processes and gene expression involved in the maintenance of cancer cells. However, the functional role of MUC1-C in ES cells is not well understood. In this study, we investigated the role of MUC1-C on growth, survival, and differentiation of mouse ES (mES) cells. METHODS AND RESULTS: Undifferentiated mES cells expressed the MUC1-C protein and the expression level was decreased during differentiation. Inhibition of MUC1-C, by the specific inhibitor GO201, reduced proliferation of mES cells. However, there was no prominent effect on pluripotent markers such as Oct4 expression and STAT3 signaling, and MUC1-C inhibition did not induce differentiation. Inhibition of MUC1-C increased the G1 phase population, decreased the S phase population, and increased cell death. Furthermore, inhibition of MUC1-C induced disruption of the ROS balance in mES cells. CONCLUSIONS: These results suggest that MUC1-C is involved in the growth and survival of mES cells.

18.
Mol Med Rep ; 23(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846773

RESUMO

Leukemia inhibitory factor (LIF) is a stem cell growth factor that maintains self­renewal of mouse embryonic stem cells (mESCs). LIF is a cytokine in the interleukin­6 family and signals via the common receptor subunit gp130 and ligand­specific LIF receptor. LIF causes heterodimerization of the LIF receptor and gp130, activating the Janus kinase/STAT and MAPK pathways, resulting in changes in protein phosphorylation. The present study profiled LIF­mediated protein phosphorylation changes in mESCs via proteomic analysis. mESCs treated in the presence or absence of LIF were analyzed via two­dimensional differential in­gel electrophoresis and protein and phosphoprotein staining. Protein identification was performed by matrix­assisted laser desorption/ionization­time of flight mass spectrophotometry. Increased phosphorylation of 16 proteins and decreased phosphorylation of 34 proteins in response to LIF treatment was detected. Gene Ontology terms enriched in these proteins included 'organonitrogen compound metabolic process', 'regulation of mRNA splicing via spliceosome' and 'nucleotide metabolic process'. The present results revealed that LIF modulated phosphorylation levels of nucleotide metabolism­associated proteins, thus providing insight into the mechanism underlying LIF action in mESCs.


Assuntos
Fator Inibidor de Leucemia/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Nucleotídeos/metabolismo , Animais , Linhagem Celular , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Camundongos , Fosforilação , Ligação Proteica , Proteômica , Receptores de OSM-LIF/metabolismo
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 257: 119776, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33857751

RESUMO

A new colorimetric and ratiometric fluorescence chemosensor 4-((3-(octadecylthio)-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)benzenesulfonamide (4DBS) was synthesized and investigated for the selective detection of Hg2+ in DMSO-H2O (9:1, v/v) solution. The chemosensor was efficiently synthesized in two steps via Michael-like addition and nucleophilic substitution reactions. The ratiometric fluorescence turn-on response was obtained towards Hg2+, and its fluorescence emission peak was red-shifted by 140 nm with an associated color change from light maroon to pale yellow due to the intramolecular charge transfer effect. The formed coordination metal complex was further evaluated by FT-IR, 1H NMR, and quantum chemical analyses to confirm the binding mechanism. The detection process was sensitive/reversible, and the calculated limit of detection for Hg2+ was 0.451 µM. Furthermore, 4DBS was effectively utilized as a bioimaging agent for detection of Hg2+ in live cells and zebrafish larvae. Additionally, 4DBS showed distinguishing detection of Hg2+ in cancer cells in comparison with normal cells. Thus, 4DBS could be employed as an efficient bioimaging probe for discriminative identification of human cancer cells.


Assuntos
Colorimetria , Mercúrio , Animais , Corantes Fluorescentes , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Peixe-Zebra
20.
J Hazard Mater ; 419: 126409, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171666

RESUMO

The goal of the present work was to fabricate a new low-cost, easy-to-prepare, dual-channel fluorescence chemosensor comprised of acridine-diphenylacetyl moieties (NDA) to enable remarkable Sn4+ detection in water and biological medium. The resulting NDA-Sn4+ complex was utilized for the distinguished identification of Cr2O72- ions from other anions and biomolecules. These investigations involve the absorption, fluorescence, and electrochemical methods for the detection of Sn4+ and Cr2O72- ions in pure water. The mechanism for NDA-mediated Sn4+ detection was experimentally determined by FT-IR, NMR titrations, mass (ESI) analyses, and DFT calculations. The obtained results indicate that the NDA chemosensor possessed excellent performance characteristics including good water solubility and compatibility, quick response time (less than 10 s), high sensitivity (Sn4+ = 0.268 µM and Cr2O72- = 0.160 µM), and selectivity against coexisting metals, anions, amino acids, and peptides. The chemosensor NDA induced negligible toxicity in live cells and was successfully utilized as a biomarker for the tracking of Sn4+ in human normal and cancer cells. More importantly, NDA demonstrates distinguished recognition of Sn4+ in human cancer cells rather than in normal live cells. Additionally, NDA was shown to act as a mitochondria-targeted probe in FaDu cells.


Assuntos
Neoplasias , Água , Acridinas , Corantes Fluorescentes , Humanos , Íons , Mitocôndrias , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA