Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 247: 110042, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147193

RESUMO

Retinal vascular leakage is a major event in several retinal diseases, including diabetic retinopathy (DR). In a previous study, we demonstrated that the aqueous humor concentration of Cystatin C (CST3), a physiological inhibitor of cysteine protease, is negatively correlated with the severity of diabetic macular edema. However, its function in the retina has not been clearly elucidated. In this study, we found a significant decrease in the aqueous humor concentration of CST3 with DR progression. Furthermore, we found that CST3 was expressed in retinal endothelial cells and that its expression was significantly downregulated in high glucose-treated human retinal microvascular endothelial cells (HRMECs) and the retinal vessels of oxygen-induced retinopathy (OIR) mice. Silencing CST3 expression resulted in decreased HRMEC migration and tubule formation ability. Exogenous addition of the CST3 protein significantly improved HRMEC migration and tubular formation. In-vivo experiments demonstrated that CST3 silencing induced retinal vascular leakage in WT mice, while its intravitreal injection significantly reduced retinal leakage in OIR mice. Mechanistically, CST3 promoted the expression of the downstream adhesion molecules, claudin5, VE-cadherin, and ZO-1, in retinal vascular cells by regulating the Rap1 signaling pathway. Therefore, this study revealed a novel mechanism by which CST3 improves retinal vascular function and provided evidence that it is a potential therapeutic target for retinal vascular leakage.


Assuntos
Permeabilidade Capilar , Cistatina C , Retinopatia Diabética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Vasos Retinianos , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP , Animais , Humanos , Camundongos , Humor Aquoso/metabolismo , Barreira Hematorretiniana , Western Blotting , Movimento Celular , Células Cultivadas , Cistatina C/genética , Cistatina C/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Regulação da Expressão Gênica , Injeções Intravítreas , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Complexo Shelterina , Transdução de Sinais/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética
2.
Hum Mutat ; 40(8): 1039-1045, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30998843

RESUMO

Retinitis pigmentosa (RP) is the most common manifestation of inherited retinal diseases with high degree of genetic, allelic, and phenotypic heterogeneity. CEP250 encodes the C-Nap1 protein and has been associated with various retinal phenotypes. Here, we report the identification of a mutation (c.562C>T, p.R188*) in the CEP250 in a consanguineous family with nonsyndromic RP. To gain insights into the molecular pathomechanism underlying CEP250 defects and the functional relevance of CEP250 variants in humans, we conducted a functional characterization of CEP250 variant using a novel Cep250 knockin mouse line. Remarkably, the disruption of Cep250 resulted in severe impairment of retinal function and significant retinal morphological alterations. The homozygous knockin mice showed significantly reduced retinal thickness and ERG responses. This study not only broadens the spectrum of phenotypes associated with CEP250 mutations, but also, for the first time, elucidates the function of CEP250 in photoreceptors using a newly established animal model.


Assuntos
Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sequenciamento do Exoma/métodos , Polimorfismo de Nucleotídeo Único , Retinose Pigmentar/genética , Animais , Códon sem Sentido , Consanguinidade , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Humanos , Camundongos , Linhagem , Fenótipo , Retinose Pigmentar/metabolismo
3.
Transbound Emerg Dis ; 69(6): 3562-3570, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36193011

RESUMO

Enterocytozoon bieneusi is an important pathogen that is responsible for over 90% of documented cases of human microsporidiosis worldwide, causing a threat to public health and husbandry development. In immunocompromised patients, it can cause persistent diarrhoea, wasting diathesis and malabsorption and developing life-threatening chronic diarrhoea. However, there was little information on the prevalence and multilocus genotypes of E. bieneusi in diarrheic pigs in three provinces of southern China. In this study, 1254 faecal samples of diarrheic pigs were collected from 37 pig farms in Hunan, Jiangxi, and Fujian provinces in southern China, and were investigated the prevalence and genotypes of E. bieneusi by nested polymerase chain reaction (PCR) based on the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA gene. The overall prevalence of E. bieneusi was 5.7% (72/1254) in three provinces. Furthermore, the difference was statistically significant (p < 0.001) in the prevalence of E. bieneusi in age groups. ITS sequence analysis revealed that 13 E. bieneusi genotypes were identified, including 8 known genotypes (EbpC, n = 30; Henan-IV, n = 21; CH5, n = 6; EbpA, n = 3; KIN-1, n = 2; O, n = 1; GX3, n = 1; CHS5, n = 1) and 5 novel genotypes (JX1, n = 2; JX2, n = 1; JX3, n = 2; FJ1, n = 1; FJ2, n = 1), and the genotype EbpC was the preponderant genotype. Phylogenetic analysis indicated that all genotypes of E. bieneusi were clustered as the zoonotic group 1. Moreover, a high genetic diversity of E. bieneusi were identified in this study, which the 64, 57, 52 and 64 samples were identified by multilocus sequence typing (MLST) at MS1, MS3, MS4 and MS7 loci, respectively. Then, 45 samples were successfully amplified and sequenced at four loci, forming 41 distinct multilocus genotypes (MLGs). These findings suggest that diarrheic pigs may potentially threaten to transmit E. bieneusi to humans, revealing E. bieneusi genetic variability in diarrheic pigs in three provinces of southern China.


Assuntos
Enterocytozoon , Animais , Humanos , Suínos , Tipagem de Sequências Multilocus/veterinária , Enterocytozoon/genética , Filogenia , China/epidemiologia , DNA Espaçador Ribossômico/genética , Genótipo , Prevalência , Fezes , Variação Genética , Diarreia/epidemiologia , Diarreia/veterinária
4.
Animals (Basel) ; 12(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35883310

RESUMO

Entamoeba spp. is a common zoonotic intestinal protozoan that can parasitize most vertebrates, including humans and pigs, causing severe intestinal diseases and posing a serious threat to public health. However, the available data on Entamoeba spp. infection in pigs are relatively limited in China. To characterize the infection of Entamoeba spp. within pigs in southern China, 1254 fecal samples of diarrheic pigs were collected from 37 intensive pig farms in Hunan, Jiangxi and Fujian provinces and the infection of Entamoeba spp. was investigated based on the small subunit rRNA (SSU rRNA) gene. The overall infection rate of Entamoeba spp. was 58.4% (732/1254), including 38.4% (118/307) in suckling piglets, 51.2% (153/299) in weaned piglets, 57.9% (55/95) in fattening pigs and 73.4% (406/553) in sows, respectively. Moreover, age and the sampling cities in Jiangxi and Fujian provinces were found to be the key factors influencing the infection of Entamoeba spp. (p < 0.05). Two subtypes (ST1 and ST3) with a zoonotic potential of Entamoeba polecki and Entamoeba suis were detected in all age groups of pigs and all sampling areas, with the predominant species and predominant subtype being E. polecki (91.3%, 668/732) and E. polecki ST1 (573/668), respectively, and E. polecki ST1 + E. polecki ST3 (78.6%, 239/304) being the most frequently detected form of mixed infection. Severe Entamoeba spp. infection and zoonotic subtypes were found in this study, exposing a large public health problem in the study area, and strategies need to be implemented to eliminate the risk in the future.

5.
Front Cell Dev Biol ; 7: 333, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921845

RESUMO

Previous study has identified SLC7A14 as a new causative gene of retinitis pigmentosa (RP). However, the role of SLC7A14 has not been fully characterized. The goal of this study was to investigate the biological features of slc7a14 in zebrafish. To determine the expression of slc7a14 in developing zebrafish, we performed in situ hybridization (ISH) and quantitative real-time PCR. Morpholino knockdown and overexpression experiments were performed to study the role of slc7a14 in zebrafish retinas. Immunostaining was carried out to observe structural changes. Visual motor responses (VMR) and optokinetic responses (OKR) were analyzed to assess visual behaviors. Terminal deoxynucleotidyl transferase (dUTP) nick-end labeling (TUNEL) staining was performed to survey apoptotic retinal cells. We found that slc7a14 was highly expressed in neuronal tissues, including the brain, spinal cord and retina, and that the expression levels increased during early embryogenesis. Consistently, ISH showed a similar expression pattern. Knockdown of slc7a14 led to dose-dependent microphthalmia that was reversed by overexpression. The immunostaining results revealed that the rod-specific protein zpr-3 and the retinal pigment epithelium-specific protein zpr-2 (decreased to 44.48%) were significantly suppressed in the slc7a14-silenced morphants. Notably, visual behaviors (the VMR and the OKR) were severely impaired in the slc7a14-deficient morphant, especially the VMR OFF response. In addition, apoptotic cells were observed in the retina at 3 days post fertilization (dpf) and 5 dpf by TUNEL assay. Our results demonstrated that slc7a14 is essential for visually mediated behaviors in zebrafish. Temporary silencing of slc7a14 in larvae led to severe visual impairments, consistent with the manifestations observed in RP patients. Our findings provide further insights into the genetic mechanisms of RP predisposition caused by SLC7A14 mutations.

6.
Front Cell Dev Biol ; 6: 75, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050903

RESUMO

Over recent decades, zebrafish has been established as a sophisticated vertebrate model for studying human ocular diseases due to its high fecundity, short generation time and genetic tractability. With the invention of morpholino (MO) technology, it became possible to study the genetic basis and relevant genes of ocular diseases in vivo. Many genes have been shown to be related to ocular diseases. However, the issue of specificity is the major concern in defining gene functions with MO technology. The emergence of the first- and second-generation genetic modification tools zinc-finger nucleases (ZFNs) and TAL effector nucleases (TALENs), respectively, eliminated the potential phenotypic risk induced by MOs. Nevertheless, the efficiency of these nucleases remained relatively low until the third technique, the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, was discovered. This review highlights the application of multiple genome engineering techniques, especially the CRISPR/Cas9 system, in the study of human ocular diseases in zebrafish.

7.
Exp Mol Med ; 50(4): 1-11, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700284

RESUMO

Ocular coloboma is a developmental structural defect of the eye that often occurs as complex ocular anomalies. However, its genetic etiology remains largely unexplored. Here we report the identification of mutation (c.331C>T, p.R111C) in the IPO13 gene in a consanguineous family with ocular coloboma, microphthalmia, and cataract by a combination of whole-exome sequencing and homozygosity mapping. IPO13 encodes an importin-B family protein and has been proven to be associated with the pathogenesis of coloboma and microphthalmia. We found that Ipo13 was expressed in the cornea, sclera, lens, and retina in mice. Additionally, the mRNA expression level of Ipo13 decreased significantly in the patient compared with its expression in a healthy individual. Morpholino-oligonucleotide-induced knockdown of ipo13 in zebrafish caused dose-dependent microphthalmia and coloboma, which is highly similar to the ocular phenotypes in the patient. Moreover, both visual motor response and optokinetic response were impaired severely. Notably, these ocular phenotypes in ipo13-deficient zebrafish could be rescued remarkably by full-length ipo13 mRNA, suggesting that the phenotypes observed in zebrafish were due to insufficient ipo13 function. Altogether, our findings demonstrate, for the first time, a new role of IPO13 in eye morphogenesis and that loss of function of IPO13 could lead to ocular coloboma, microphthalmia, and cataract in humans and zebrafish.


Assuntos
Catarata/genética , Coloboma/genética , Carioferinas/genética , Microftalmia/genética , Mutação Puntual , Peixe-Zebra/genética , Adulto , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Modelos Moleculares , Transcriptoma
8.
Int J Ophthalmol ; 9(8): 1094-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27588261

RESUMO

AIM: To identify the genetic defects of a Chinese patient with sporadic retinitis pigmentosa (RP). METHODS: Ophthalmologic examinations were performed on the sporadic RP patient, 144 genes associated with retinal diseases were scanned with capture next generation sequencing (CNGS) approach. Two heterozygous mutations in PDE6B were confirmed in the pedigree by Sanger sequencing subsequently. The carrier frequency of PDE6B mutations of reported PDE6B mutations based on the available two public exome databases (1000 Genomes Project and ESP6500 Genomes Project) and one in-house exome database was investigated. RESULTS: We identified compound heterozygosity of two novel nonsense mutations c.1133G>A (p.W378X) and c.2395C>T (p.R799X) in PDE6B, one reported causative gene for RP. Neither of the two mutations in our study was presented in three exome databases. Two mutations (p.R74C and p.T604I) in PDE6B have relatively high frequencies in the ESP6500 and in-house databases, respectively, while no common dominant mutation in each of the database or across all databases. CONCLUSION: We demonstrates that compound heterozygosity of two novel nonsense mutations in PDE6B could lead to RP. These results collectively point to enormous potential of next-generation sequencing in determining the genetic etiology of RP and how various mutations in PDE6B contribute to the genetic heterogeneity of RP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA