RESUMO
Since the initial MXenes were discovered in 2011, several MXene compositions constructed using combinations of various transition metals have been developed. MXenes are ideal candidates for different applications in energy conversion and storage, because of their unique and interesting characteristics, which included good electrical conductivity, hydrophilicity, and simplicity of large-scale synthesis. Herein, we study the current developments in two-dimensional (2D) MXene nanosheets for energy storage and conversion technologies. First, we discuss the introduction to energy storage and conversion devices. Later, we emphasized on 2D MXenes and some specific properties of MXenes. Subsequently, research advances in MXene-based electrode materials for energy storage such as supercapacitors and rechargeable batteries is summarized. We provide the relevant energy storage processes, common challenges, and potential approaches to an acceptable solution for 2D MXene-based energy storage. In addition, recent advances for MXenes used in energy conversion devices like solar cells, fuel cells and catalysis is also summarized. Finally, the future prospective of growing MXene-based energy conversion and storage are highlighted.
RESUMO
Mesenchymal stem cells (MSCs) are ubiquitous multipotent cells that exhibit significant therapeutic potentials in a variety of disorders. Nevertheless, their clinical efficacy is limited owing to poor survival, low rate of engraftment, and impaired potency upon transplantation. Spheroidal three-dimensional (3D) culture of MSCs (MSC3D) has been proven to better preserve their in vivo functional properties. However, the molecular mechanisms underlying the improvement in MSC function by spheroid formation are not clearly understood. NLRP3 inflammasomes, a key component of the innate immune system, have recently been shown to play a role in cell fate decision of MSCs. The present study examined the role of NLRP3 inflammasomes in the survival and potency of MSC spheroids. We found that MSC3D led to decreased activation of NLRP3 inflammasomes through alleviation of ER stress in an autophagy-dependent manner. Importantly, downregulation of NLRP3 inflammasomes signaling critically contributes to the enhanced survival rate in MSC3D through modulation of pyroptosis and apoptosis. The critical role of NLRP3 inflammasome suppression in the enhanced therapeutic efficacy of MSC spheroids was further confirmed in an in vivo mouse model of DSS-induced colitis. These findings suggest that 3D culture confers survival and functional advantages to MSCs by suppressing NLRP3 inflammasome activation.
Assuntos
Colite , Inflamassomos , Células-Tronco Mesenquimais , Animais , Camundongos , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Inflamassomos/genética , Inflamassomos/imunologia , Células-Tronco Mesenquimais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais , Técnicas de Cultura de Células em Três DimensõesRESUMO
Stimulation of cells with electrical cues is an imperative approach to interact with biological systems and has been exploited in clinical practices over a wide range of pathological ailments. This bioelectric interface has been extensively explored with the help of piezoelectric materials, leading to remarkable advancement in the past two decades. Among other members of this fraternity, colloidal perovskite barium titanate (BaTiO3 ) has gained substantial interest due to its noteworthy properties which includes high dielectric constant and excellent ferroelectric properties along with acceptable biocompatibility. Significant progression is witnessed for BaTiO3 nanoparticles (BaTiO3 NPs) as potent candidates for biomedical applications and in wearable bioelectronics, making them a promising personal healthcare platform. The current review highlights the nanostructured piezoelectric bio interface of BaTiO3 NPs in applications comprising drug delivery, tissue engineering, bioimaging, bioelectronics, and wearable devices. Particular attention has been dedicated toward the fabrication routes of BaTiO3 NPs along with different approaches for its surface modifications. This review offers a comprehensive discussion on the utility of BaTiO3 NPs as active devices rather than passive structural unit behaving as carriers for biomolecules. The employment of BaTiO3 NPs presents new scenarios and opportunity in the vast field of nanomedicines for biomedical applications.
Assuntos
Nanopartículas , Nanoestruturas , Bário , Compostos de Bário/químicaRESUMO
In vitro cultured meat is an emerging area of research focus with an innovative approach through tissue engineering (i.e., cellular engineering) to meet the global food demand. The manufacturing of lab-cultivated meat is an innovative business that alleviates life-threatening environmental issues concerning public health and animal well-being on the global platform. There has been a noteworthy advancement in cultivating artificial meat, but still, there are numerous challenges that impede the swift headway of lab-grown meat production at a commercially large scale. In this review, we focus on the manufacturing of edible scaffolds for cultured meat production. In brief, first an introduction to cultivating artificial meat and its current scenario in the market is provided. Further, a discussion on the understanding of composition, cellular, and molecular communications in muscle tissue is presented, which are vital to scaling up the production of lab-grown meat. In continuation, the major components (e.g., cells, biomaterial scaffolds, and their manufacturing technologies, media, and potential bioreactors) for cultured meat production are conferred followed by a comprehensive discussion on the most recent advances in lab-cultured meat. Finally, existing challenges and opportunities including future research perspectives for scaling-up cultured meat production are discussed with conclusive interpretations.
Assuntos
Carne , Engenharia Tecidual , Animais , Materiais Biocompatíveis , MúsculosRESUMO
Integrins are the main cell surface receptors and execute multifaceted functions such as the bidirectional transmission of signals (i.e., inside-out and outside-in) and provide communication between cells and their microenvironments. Integrins are the key regulators of critical biological functions and contribute significantly to the promotion of cancer at almost every stage of disease progression from initial tumor formation to metastasis. Integrin expressions are frequently altered in different cancers, and consequently, several therapeutic strategies targeting integrins have been developed. Furthermore, nanotechnology-based approaches have been devised to overcome the intrinsic limitations of conventional therapies for cancer management, and have been shown to more precise, safer, and highly effective therapeutic tools. Although nanotechnology-based approaches have achieved substantial success for the management of cancer, certain obstacles remain such as inadequate knowledge of nano-bio interactions and the challenges associated with the three stages of clinical trials. This review highlights the different roles of integrins and of integrin-dependent signaling in various cancers and describes the applications of nanotherapeutics targeting integrins. In addition, we discuss RGD-based approaches and challenges posed to cancer management.
Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Integrinas/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Gerenciamento Clínico , Humanos , Nanopartículas/química , Neoplasias/patologiaRESUMO
Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.
Assuntos
Grafite , Hidrogéis , Bentonita , Argila , Hidrogéis/química , Álcool de Polivinil/química , Água/químicaRESUMO
The purpose of this review article is to outline the extended applications of polyurethane (PU)-based nanocomposites incorporated with conductive polymeric particles as well as to condense an outline on the chemistry and fabrication of polyurethanes (PUs). Additionally, we discuss related research trends of PU-based conducting materials for EMI shielding, sensors, coating, films, and foams, in particular those from the past 10 years. PU is generally an electrical insulator and behaves as a dielectric material. The electrical conductivity of PU is imparted by the addition of metal nanoparticles, and increases with the enhancing aspect ratio and ordering in structure, as happens in the case of conducting polymer fibrils or reduced graphene oxide (rGO). Nanocomposites with good electrical conductivity exhibit noticeable changes based on the remarkable electric properties of nanomaterials such as graphene, RGO, and multi-walled carbon nanotubes (MWCNTs). Recently, conducting polymers, including PANI, PPY, PTh, and their derivatives, have been popularly engaged as incorporated fillers into PU substrates. This review also discusses additional challenges and future-oriented perspectives combined with here-and-now practicableness.
Assuntos
Nanocompostos/química , Poliuretanos/química , Condutividade Elétrica , Grafite/química , Nanotubos de Carbono/química , Polímeros/químicaRESUMO
Plant virus-based nanoparticles (PVNs) are self-assembled capsid proteins of plant viruses, and can be virus-like nanoparticles (VLPs) or virus nanoparticles (VNPs). Plant viruses showing helical capsid symmetry are used as a versatile platform for the presentation of multiple copies of well-arrayed immunogenic antigens of various disease pathogens. Helical PVNs are non-infectious, biocompatible, and naturally immunogenic, and thus, they are suitable antigen carriers for vaccine production and can trigger humoral and/or cellular immune responses. Furthermore, recombinant PVNs as vaccines and adjuvants can be expressed in prokaryotic and eukaryotic systems, and plant expression systems can be used to produce cost-effective antigenic peptides on the surfaces of recombinant helical PVNs. This review discusses various recombinant helical PVNs based on different plant viral capsid shells that have been developed as prophylactic and/or therapeutic vaccines against bacterial, viral, and protozoal diseases, and cancer.
Assuntos
Imunoterapia , Nanopartículas , Vírus de Plantas/imunologia , Vacinação , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Animais , Infecções Bacterianas/prevenção & controle , Infecções Bacterianas/terapia , Proteínas do Capsídeo/imunologia , Engenharia Genética , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Vírus de Plantas/genética , Infecções por Protozoários/prevenção & controle , Infecções por Protozoários/terapia , Vacinas Sintéticas/genética , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas Virais/genética , Viroses/prevenção & controle , Viroses/terapiaRESUMO
Biomaterials play a very important role in biomedicine and tissue engineering where they directly affect the cellular activities and their microenvironment . Myriad of techniques have been employed to fabricate a vast number natural, artificial and recombinant polymer s in order to harness these biomaterials in tissue regene ration , drug delivery and various other applications. Despite of tremendous efforts made in this field during last few decades, advanced and new generation biomaterials are still lacking. Protein based biomaterials have emerged as an attractive alternatives due to their intrinsic properties like cell to cell interaction , structural support and cellular communications. Several protein based biomaterials like, collagen , keratin , elastin , silk protein and more recently recombinant protein s are being utilized in a number of biomedical and biotechnological processes. These protein-based biomaterials have enormous capabilities, which can completely revolutionize the biomaterial world. In this review, we address an up-to date review on the novel, protein-based biomaterials used for biomedical field including tissue engineering, medical science, regenerative medicine as well as drug delivery. Further, we have also emphasized the novel fabrication techniques associated with protein-based materials and implication of these biomaterials in the domain of biomedical engineering .
Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Proteínas/química , Medicina Regenerativa , Engenharia Tecidual , Elastina , Humanos , Polímeros , Proteínas Recombinantes , SedaRESUMO
In this study, the structure and properties of an organic-inorganic composite material prepared from cellulose doped with fine particles of silver iodide (AgI) were examined. The preparation of the composite involved the complexation of cellulose with polyiodide ions, such as I- and 13-, by immersion in iodine/potassium iodide (I2/KI: 0.2, 0.4, 0.6, 0.8, 1.0 M) or potassium iodide (KI: 0.6, 1.2, 1.8, 2.4, 3.0 M) aqueous solutions followed by reaction in a silver nitrate (AgNO3:1.0 M) aqueous solution. These procedures resulted in the in situ formation of fine ß-AgI particles within the cellulose matrix. The characteristics and conductivities of prepared cellulose/silver iodide (AgI) nanocomposite films with different I2/KI and KI concentrations were investigated. AgI particle formation and aggregation increased on increasing I2/KI and KI concentrations as determined by SEM. X-ray results showed that KI could penetrate the cellulose crystal region and form AgI particles. The electrical conductivities of nanocomposite films treated with KI were higher than that of I2/KI at < 1.0 M of I2/KI and 3 M of KI, although the weight gain by AgI formation was lower than that of I2/KI. This was also attributed to the formation of smaller AgI particles and crystal defects. Highest electrical conductivity (3.8 x 10(-7) Ω(-1) cm(-1)) was obtained from the cellulose films (1.25 x 10(-11) Ω(-1) cm(-1)) treated with the aqueous solutions of 1.0 M I2/KI and 1.0 M AgNO3.
Assuntos
Celulose/química , Iodetos/química , Nanocompostos/química , Nanotecnologia , Compostos de Prata/química , Condutividade Elétrica , Iodeto de Potássio/químicaRESUMO
Osteoporosis is one of the major metabolic bone diseases and is among the most challenging noncommunicable diseases to treat. Although there is an increasing interest in identifying bioactive molecules for the prevention and management of osteoporosis, such studies principally focus only on differentiation and mineralization of osteoblasts or inhibition of osteoclast activity. Stimulation of osteoblast migration must be a promising osteoanabolic strategy for improved metabolic bone disease therapy. In this study, we show that an anthraquinone derivative, aurantio-obtusin, stimulated chemotactic migration of MC3T3-E1 osteoblast cells in a concentration-dependent manner. The use of a real-time chemotaxis analyzing system, TAXIScan, facilitated the evaluation of both velocity and directionality of osteoblast migration in response to the compound. Besides migration, the compound stimulated osteoblast differentiation and mineralization. Taken together, the data presented in this paper demonstrate that aurantio-obtusin is a promising osteoanabolic compound of natural origin with potential therapeutic applications in the prevention of osteoporosis and other metabolic bone diseases.
Assuntos
Antraquinonas/farmacologia , Cassia/química , Diferenciação Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoporose/prevenção & controle , Animais , Antraquinonas/química , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Humanos , Camundongos , Osteoblastos/fisiologia , Sementes/químicaRESUMO
Addressing major bone injuries is a challenge in bone regeneration, necessitating innovative 3D hydrogel-based therapeutic approaches to enhance scaffold properties for better bioactivity. Bacterial cellulose (BC) is an excellent scaffold for bone tissue engineering due to its biocompatibility, high porosity, substantial surface area, and remarkable mechanical strength. However, its practical application is limited due to a lack of inherent osteogenic activity and biomineralization ability. In this study, we synthesized bone-like apatite in biocompatible BC hydrogel by introducing phosphate groups. Hydrogels were prepared using fibrous BC, acrylamide (AM), and bis [2-methacryloyloxy] ethyl phosphate (BMEP) as a crosslinker through free radical polymerization (P-BC-PAM). P-BC-PAM hydrogels exhibited outstanding compressive mechanical properties, highly interconnected porous structures, good swelling, and biodegradable properties. BMEP content significantly influenced the physicochemical and biological properties of the hydrogels. Increasing BMEP content enhanced the fibrous structure, porosity from 85.1 % to 89.5 %, and compressive mechanical strength. The optimized hydrogel (2.0P-BC-PAM) displayed maximum compressive stress, toughness, and elastic modulus at 75 % strain: 221 ± 0.08 kPa, 24,674.2 ± 978 kPa, and 11 ± 0.47 kPa, respectively. P-BC-PAM hydrogels underwent biomineralization in simulated body fluid (SBF) for 14 days, forming bone-like apatite with a Ca/P ratio of 1.75, similar to hydroxyapatite. Confirmed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM), this suggests their potential as scaffolds for bone tissue engineering. MC3T3-E1 osteoblast cells effectively attached and proliferated on P-BC-PAM. In summary, this study contributes insights into developing phosphate-functionalized BC-based hydrogels with potential applications in bone tissue engineering.
Assuntos
Apatitas , Engenharia Tecidual , Engenharia Tecidual/métodos , Apatitas/química , Celulose/química , Hidrogéis/farmacologia , Hidrogéis/química , Durapatita/química , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Porosidade , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Developing innovative films and coatings is paramount for extending the shelf life of numerous food products and augmenting the barrier and antimicrobial properties of food packaging materials. Many synthetic chemicals used in active packaging and food storage have the potential to leach into food, posing long-term health risks. It is imperative for active packaging materials to inherently possess biological protective properties to ensure food quality and safety throughout its storage. Bacteriophages, or simply phages, are bacteria-eating viruses that serve as promising natural biocontrol agents and antimicrobial bioadditives in food packaging materials, specifically targeting bacterial foodborne pathogens. These phages are generally recognized as safe (GRAS) by regulatory authorities for food safety applications. They exhibit targeted action against various Gram-positive and -negative foodborne pathogens, including Bacillus spp., Campylobacter spp., Escherichia coli, Listeria monocytogenes, Salmonella spp., Shigella spp., and Vibrio spp., associated with foodborne spoilage and illness without affecting the beneficial microbes. Phage cocktails can be applied directly on food surfaces, incorporated into food packaging materials, or utilized during food processing treatments. Unlike chemical agents, phage activity increases proportionally with the rise in pathogenic bacterial populations. Researchers are exploring various packaging materials to deliver phages with broad host range, stability, and viability ensuring their effectiveness in safeguarding various food systems. The effectiveness of phage immobilization or encapsulation on active food packaging materials depends on various factors, including the characteristics of polymers, the choice of solvents, the type of phage, and its loading efficiency. Factors such as the orientation of phage immobilization on substrates, pH, temperature, exposure to carbohydrates and amino acids, exopolysaccharides, lipopolysaccharides, and metals can also influence phage activity. In this review, we comprehensively discuss the various active packaging systems utilizing bacteriophages as natural biocontrols and antimicrobial bioadditives to reduce the incidence of foodborne illness and enhance consumer confidence in the safety of food products.
Assuntos
Bacteriófagos , Embalagem de Alimentos , Conservação de Alimentos , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Bacteriófagos/fisiologia , Microbiologia de Alimentos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , HumanosRESUMO
Solid-state polymer electrolytes (SSPEs) are promising materials for Li-ion batteries due to their enhanced safety features, which are crucial for preventing short circuits and explosions, replacing traditional liquid electrolytes with solid electrolytes are increasingly important to improve battery reliability and lifespan. There are essentially three-types of solid-state electrolytes such as solid polymer electrolyte, composite based polymer electrolyte and gel-based polymer electrolyte are largely used in battery applications. Additionally, battery separators must have high ionic conductivity and porosity to boost safety and performance. Durable solid composites electrolytes with excellent thermal and mechanical properties are key to reducing the risk of lithium dendrite growth, thereby improving overall battery efficiency. Despite their potential, challenges like scalability, cost and real-world performance optimizations still need to be addressed.
RESUMO
The use of small organic molecules, such as chalcones, for efficient applications as organic luminescent materials has attracted increasing attention owing to their interesting optical, photophysical, and biological properties. In this study, a new chalcone, 1-(4-isopropylphenyl)-5-(6-methoxynaphthalen-2-yl)pent-1-en-3-one (INM), was synthesized via base condensation between nabumetone and cuminaldehyde. INM was subsequently identified and characterized by FT-IR, NMR spectroscopy (1H and 13C), mass spectrometry, elemental analysis, X-ray diffraction, thermogravimetric analysis, and FESEM studies. Investigation of the solvent effect revealed that the π â π* transition involved a bathochromic shift from hexane to water and a large Stokes-shifted, twisted intramolecular charge-transfer emission in water. Diffuse reflectance spectral studies confirmed the formation of transparent INM chalcones with excellent crystallinity, and photoluminescence studies substantiated the low recombination rate of electrons and holes. Tauc plot analysis with the Kubelka-Munk algorithm revealed higher direct (3.57 eV) and indirect (3.41 eV) bandgap energies of INM. Density functional theory calculations at B3LYP/6-31G(d,p) revealed that INM had promising nonlinear optical activity (ß ≈ 30.504 × 10-30 compared to a reference material, urea. Cell biocompatibility was evaluated after culturing skin fibroblasts and breast cancer cells with INM using the MTT assay and fluorescence microscopy of the live/dead cell assay. It was observed that INM exhibited good NIH/3T3 cell adhesion and proliferation and the weak inhibiting ability of MDA-MB231.
RESUMO
Nanoencapsulation has gained considerable attention because of its unique features and advantages in anticancer drug delivery. Amygdalin (AMY) is an anticancer compound, showing limitations in its applications by low stability. Herein, the inclusion complexes (ICs) of AMY with ß-cyclodextrin (ßCD), and its derivatives such as 2-hydroxypropyl-ßCD (HPßCD) and methyl-ßCD (MßCD) were fabricated. The fabricated AMY/CD-ICs were thoroughly evaluated using Fourier-transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric/differential thermal analysis, proton nuclear magnetic resonance, ultraviolet-visible diffuse reflectance spectroscopy, and photoluminescence techniques. Double reciprocal profile study of the absorption and fluorescence spectra revealed that the AMY formed the ICs with ßCD derivatives at a guest/host stoichiometric ratio of 1/1. The thermal stability of AMY was enhanced as the IC formation aid observed by the shift of thermal degradation temperature of AMY from the range of â¼ 220-250 °C to > 295 °C. Theoretical analyses of the energetic, electronic, and global reactivity parameters of the AMY/CD-ICs were evaluated using the PM3 method. Further assessment of the dissolution diagrams of AMY/CD-ICs revealed a burst release profile. In addition, cell toxicity was evaluated using the MTT assay, and the results showed that AMY/CD-ICs had significantly more efficacious in inhibiting HeLa cancer cells than AMY. These results proved that the IC formations with CDs significantly enhanced the anticancer activity of AMY.
Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Amigdalina , Antineoplásicos , beta-Ciclodextrinas , Humanos , beta-Ciclodextrinas/química , Amigdalina/química , Amigdalina/administração & dosagem , Amigdalina/farmacologia , Células HeLa , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina/química , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Liberação Controlada de Fármacos , Difração de Raios X/métodos , Estabilidade de MedicamentosRESUMO
Bacteriophages are employed as cost-effective and efficient antibacterial agents to counter the emergence of antibiotic-resistant bacteria and other host bacteria in phage therapy. The increasing incidence of skin wounds is a significant concern in clinical practice, especially considering the limitations of antibiotic therapy. Furthermore, the lack of an effective delivery system that preserves the stability of bacteriophages hampers their clinical implementation. In recent years, there has been a growing amount of research on bacteriophage applications in veterinary and biomedical sciences. In our study, lytic coliphage vB_Eco2571-YU1 was isolated against pathogenic Escherichia coli host bacteria, and hydrogel wound dressing materials were fabricated with marine polysaccharide carrageenan (carr-vB_Eco2571-YU1) for their antibacterial activity. Transmission electron microscopy (TEM) morphology identified it as a Myoviridae coliphage with an icosahedral head length and width of approximately 60 and 56.8 nm, respectively, and a tail length of 119.7 nm. The one-step growth curve of coliphage revealed a latent period of 10 min, a rise period of 15 min, and a burst size of 120 virions per cell. The bacteriolytic activity of unimmobilized coliphages was observed within 2 h; however, strain-specific phage resistance was acquired after 9 h. In contrast, carr-vB_Eco2571-YU1 showed a sharp decline in the growth of bacteria in the log phase after 2 h and did not allow for the acquisition of phage resistance by the E. coli strain. The stability of coliphage under different pH, temperature, osmolarity, detergents, and organic solvents was evaluated. We also studied the long-term storage of carr-vB_Eco2571-YU1 hydrogels at 4 °C and found that the titer value decreased during a time-dependent period of 28 days. These hydrogels were also found to be hemocompatible using a hemolysis assay. The addition of plasticizer (0.6 % (w/v)) to the carrageenan (2 % (w/v)) to prepare carr-vB_Eco2571-YU1 hydrogels showed a decrease in compressive strength with enhanced elasticity. This phage therapy using polymeric immobilization of bacteriophages is a promising next-generation wound dressing biomaterial alternative to conventional wound and skin care management.
Assuntos
Bacteriófagos , Carragenina , Escherichia coli , Hidrogéis , Colífagos , Antibacterianos/farmacologia , BandagensRESUMO
The constantly accelerating occurrence of microbial infections and their antibiotic resistance has spurred advancement in the field of material sciences and has guided the development of novel materials with anti-bacterial properties. To address the clinical exigencies, the material of choice should be biodegradable, biocompatible, and able to offer prolonged antibacterial effects. As an attractive option, hydrogels have been explored globally as a potent biomaterial platform that can furnish essential antibacterial attributes owing to its three-dimensional (3D) hydrophilic polymeric network, adequate biocompatibility, and cellular adhesion. The current review focuses on the utilization of different antimicrobial hydrogels based on their sources (natural and synthetic). Further, the review also highlights the strategies for the generation of hydrogels with their advantages and disadvantages and their applications in different biomedical fields. Finally, the prospects in the development of hydrogels-based antimicrobial biomaterials are discussed along with some key challenges encountered during their development and clinical translation.
Assuntos
Anti-Infecciosos , Hidrogéis , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Biopolímeros , Materiais Biocompatíveis/farmacologiaRESUMO
Hydrogels have immense potential in revolutionizing central nervous system (CNS) drug delivery, improving outcomes for neurological disorders. They serve as promising tools for controlled drug delivery to the CNS. Available hydrogel types include natural macromolecules (e.g., chitosan, hyaluronic acid, alginate), as well as hybrid hydrogels combining natural and synthetic polymers. Each type offers distinct advantages in terms of biocompatibility, mechanical properties, and drug release kinetics. Design and engineering considerations encompass hydrogel composition, crosslinking density, porosity, and strategies for targeted drug delivery. The review emphasizes factors affecting drug release profiles, such as hydrogel properties and formulation parameters. CNS drug delivery applications of hydrogels span a wide range of therapeutics, including small molecules, proteins and peptides, and nucleic acids. However, challenges like limited biodegradability, clearance, and effective CNS delivery persist. Incorporating 3D bioprinting technology with hydrogel-based CNS drug delivery holds the promise of highly personalized and precisely controlled therapeutic interventions for neurological disorders. The review explores emerging technologies like 3D bioprinting and nanotechnology as opportunities for enhanced precision and effectiveness in hydrogel-based CNS drug delivery. Continued research, collaboration, and technological advancements are vital for translating hydrogel-based therapies into clinical practice, benefiting patients with CNS disorders. This comprehensive review article delves into hydrogels for CNS drug delivery, addressing their types, design principles, applications, challenges, and opportunities for clinical translation.