Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Plant Cell Environ ; 47(1): 246-258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37830787

RESUMO

Plants can sense the photoperiod to flower at the right time. As a sensitive short-day crop, soybean (Glycine max) flowering varies greatly depending on photoperiods, affecting yields. Adaptive changes in soybeans rely on variable genetic loci such as E1 and FLOWERING LOCUS T orthologs. However, the precise coordination and control of these molecular components remain largely unknown. In this study, we demonstrate that GmFT5b functions as a crucial factor for soybean flowering. Overexpressed or mutated GmFT5b resulted in significantly early or later flowering, altering expression profiles for several downstream flowering-related genes under a long-day photoperiod. GmFT5b interacts with the transcription factor GmFDL15, suggesting transcriptional tuning of flowering time regulatory genes via the GmFT5b/GmFDL15 complex. Notably, GmFT5a partially compensated for GmFT5b function, as ft5a ft5b double mutants exhibited an enhanced late-flowering phenotype. Association mapping revealed that GmFT5b was associated with flowering time, maturity, and geographical distribution of soybean accessions, all associated with the E1 locus. Therefore, GmFT5b is a valuable target for enhancing regional adaptability. Natural variants or multiple mutants in this region can be utilized to generate optimized soybean varieties with precise flowering times.


Assuntos
Glycine max , Fotoperíodo , Glycine max/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Loci Gênicos , Flores/fisiologia , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Environ ; 47(5): 1656-1667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38282250

RESUMO

Soybean (Glycine max) is a typical short-day plant, but has been widely cultivated in high-latitude long-day (LD) regions because of the development of early-maturing genotypes which are photoperiod-insensitive. However, some early-maturing varieties exhibit significant responses to maturity under different daylengths but not for flowering, depicting an evident photoperiodic after-effect, a poorly understood mechanism. In this study, we investigated the postflowering responses of 11 early-maturing soybean varieties to various preflowering photoperiodic treatments. We confirmed that preflowering SD conditions greatly promoted maturity and other postflowering developmental stages. Soybean homologs of FLOWERING LOCUS T (FT), including GmFT2a, GmFT3a, GmFT3b and GmFT5a, were highly accumulated in leaves under preflowering SD treatment. More importantly, they maintained a high expression level after flowering even under LD conditions. E1 RNAi and GmFT2a overexpression lines showed extremely early maturity regardless of preflowering SD and LD treatments due to constitutively high levels of floral-promoting GmFT homolog expression throughout their life cycle. Collectively, our data indicate that high and stable expression of floral-promoting GmFT homologs play key roles in the maintenance of photoperiodic induction to promote postflowering reproductive development, which confers early-maturing varieties with appropriate vegetative growth and shortened reproductive growth periods for adaptation to high latitudes.


Assuntos
Glycine max , Fotoperíodo , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/fisiologia , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas
3.
Theor Appl Genet ; 136(12): 245, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962664

RESUMO

KEY MESSAGE: A total of 101 QTNs were found to be associated with soybean flowering time responses to photo-thermal conditions; three candidate genes with non-synonymous substitutions were identified: Glyma.08G302500 (GmHY5), Glyma.08G303900 (GmPIF4c), and Glyma.16G046700 (GmVRN1). The flowering transition is a crucial component of soybean (Glycine max L. Merr.) development. The transition process is regulated by photoperiod, temperature, and their interaction. To examine the genetic architecture associated with temperature- and photo-thermal-mediated regulation of soybean flowering, we here performed a genome-wide association study using a panel of 201 soybean cultivars with maturity groups ranging from MG 000 to VIII. Each cultivar was grown in artificially controlled photoperiod and different seasons in 2017 and 2018 to assess the thermal response (TR) and the interactive photo-thermal response (IPT) of soybean flowering time. The panel contained 96,299 SNPs with minor allele frequencies > 5%; 33, 19, and 49 of these SNPs were significantly associated with only TR, only IPT, and both TR and IPT, respectively. Twenty-one SNPs were located in or near previously reported quantitative trait loci for first-flowering; 16 SNPs were located within 200 kb of the main-effect flowering genes GmFT2a, GmFT2b, GmFT3a, GmFT3b, GmFT5a, GmFT5b, GmCOL2b, GmPIF4b, and GmPIF4c, or near homologs of the known Arabidopsis thaliana flowering genes BBX19, VRN1, TFL1, FUL, AGL19, SPA1, HY5, PFT1, and EDF1. Natural non-synonymous allelic variations were identified in the candidate genes Glyma.08G302500 (GmHY5), Glyma.08G303900 (GmPIF4c), and Glyma.16G046700 (GmVRN1). Cultivars with different haplotypes showed significant variations in TR, IPT, and flowering time in multiple environments. The favorable alleles, candidate genes, and diagnostic SNP markers identified here provide valuable information for future improvement of soybean photo-thermal adaptability, enabling expansion of soybean production regions and improving plant resilience to global climate change.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glycine max/genética , Estudo de Associação Genômica Ampla , Temperatura , Alelos , Fatores de Transcrição
4.
Mol Breed ; 43(8): 60, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37496825

RESUMO

Soybean (Glycine max (L.) Merr.) is a typical short-day and temperate crop that is sensitive to photoperiod and temperature. Responses of soybean to photothermal conditions determine plant growth and development, which affect its architecture, yield formation, and capacity for geographic adaptation. Flowering time, maturity, and other traits associated with photothermal adaptability are controlled by multiple major-effect and minor-effect genes and genotype-by-environment interactions. Genetic studies have identified at least 11 loci (E1-E4, E6-E11, and J) that participate in photoperiodic regulation of flowering time and maturity in soybean. Molecular cloning and characterization of major-effect flowering genes have clarified the photoperiod-dependent flowering pathway, in which the photoreceptor gene phytochrome A, circadian evening complex (EC) components, central flowering repressor E1, and FLOWERING LOCUS T family genes play key roles in regulation of flowering time, maturity, and adaptability to photothermal conditions. Here, we provide an overview of recent progress in genetic and molecular analysis of traits associated with photothermal adaptability, summarizing advances in molecular breeding practices and tools for improving these traits. Furthermore, we discuss methods for breeding soybean varieties with better adaptability to specific ecological regions, with emphasis on a novel strategy, the Potalaization model, which allows breeding of widely adapted soybean varieties through the use of multiple molecular tools in existing elite widely adapted varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01406-z.

5.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298387

RESUMO

Flowering time and photoperiod sensitivity are fundamental traits that determine soybean adaptation to a given region or a wide range of geographic environments. The General Regulatory Factors (GRFs), also known as 14-3-3 family, are involved in protein-protein interactions in a phosphorylation-dependent manner, thus regulating ubiquitous biological processes, such as photoperiodic flowering, plant immunity and stress response. In this study, 20 soybean GmSGF14 genes were identified and divided into two categories according to phylogenetic relationships and structural characteristics. Real-time quantitative PCR analysis revealed that GmSGF14g, GmSGF14i, GmSGF14j, GmSGF14k, GmSGF14m and GmSGF14s were highly expressed in all tissues compared to other GmSGF14 genes. In addition, we found that the transcript levels of GmSGF14 family genes in leaves varied significantly under different photoperiodic conditions, indicating that their expression responds to photoperiod. To explore the role of GmSGF14 in the regulation of soybean flowering, the geographical distribution of major haplotypes and their association with flowering time in six environments among 207 soybean germplasms were studied. Haplotype analysis confirmed that the GmSGF14mH4 harboring a frameshift mutation in the 14-3-3 domain was associated with later flowering. Geographical distribution analysis demonstrated that the haplotypes related to early flowering were frequently found in high-latitude regions, while the haplotypes associated with late flowering were mostly distributed in low-latitude regions of China. Taken together, our results reveal that the GmSGF14 family genes play essential roles in photoperiodic flowering and geographical adaptation of soybean, providing theoretical support for further exploring the function of specific genes in this family and varietal improvement for wide adaptability.


Assuntos
Glycine max , Fotoperíodo , Haplótipos/genética , Glycine max/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Theor Appl Genet ; 135(12): 4507-4522, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36422673

RESUMO

KEY MESSAGE: The genetic basis of soybean root system architecture (RSA) and the genetic relationship between shoot and RSA were revealed by integrating data from recombinant inbred population grafting and QTL mapping. Variations in root system architecture (RSA) affect the functions of roots and thus play vital roles in plant adaptations and agricultural productivity. The aim of this study was to unravel the genetic relationship between RSA traits and shoot-related traits in soybean. This study characterized RSA variability at seedling stage in a recombinant inbred population, derived from a cross between cultivated soybean C08 and wild soybean W05, and performed high-resolution quantitative trait locus (QTL) mapping. In total, 34 and 41 QTLs were detected for RSA-related and shoot-related traits, respectively, constituting eight QTL clusters. Significant QTL correspondence was found between shoot biomass and RSA-related traits, consistent with significant correlations between these phenotypes. RSA-related QTLs also overlapped with selection regions in the genome, suggesting the cultivar RSA could be a partial consequence of domestication. Using reciprocal grafting, we confirmed that shoot-derived signals affected root development and the effects were controlled by multiple loci. Meanwhile, RSA-related QTLs were found to co-localize with four soybean flowering-time loci. Consistent with the phenotypes of the parental lines of our RI population, diminishing the function of flowering controlling E1 family through RNA interference (RNAi) led to reduced root growth. This implies that the flowering time-related genes within the RSA-related QTLs are actually contributing to RSA. To conclude, this study identified the QTLs that determine RSA through controlling root growth indirectly via regulating shoot functions, and discovered superior alleles from wild soybean that could be used to improve the root structure in existing soybean cultivars.


Assuntos
Glycine max , Locos de Características Quantitativas , Glycine max/genética , Raízes de Plantas/genética , Mapeamento Cromossômico , Fenótipo
7.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361580

RESUMO

The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) is a revolutionary genome editing technology that has been used to achieve site-specific gene knock-out, large fragment deletion, or base editing in many plant species including soybean (Glycinemax). The Streptococcuspyogenes Cas9 (SpCas9) is widely used in plants at present, although there are some reports describing the application of CRISPR/Cpf1 in soybean. Therefore, the selection range of PAM (protospacer adjacent motif) sequences for soybean is currently limited to 5'-NGG-3' (SpCas9) or 5'-TTTN-3' (Cpf1), which in turn limits the number of genes that can be mutated. Another Cas9 enzyme from Staphylococcus aureus (SaCas9) recognizes the PAM sequence 5'-NNGRRT-3' (where R represents A or G), which can provide a wider range of potential target sequences. In this study, we developed a CRISPR/SaCas9 system and used this tool to specifically induce targeted mutations at five target sites in the GmFT2a (Glyma.16G150700) and GmFT5a (Glyma.16G044100) genes in soybean hairy roots. We demonstrated that this tool can recognize the PAM sequences 5'-AAGGGT-3', 5'-GGGGAT-3', 5'-TTGAAT-3', and 5'-TAGGGT-3' in soybean, and it achieved mutation rates ranging from 34.5% to 73.3%. Our results show that we have established a highly efficient CRISPR/SaCas9 tool that is as suitable as SpCas9 for genome editing in soybean, and it will be useful for expanding the range of target sequences for genome editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Staphylococcus aureus/metabolismo , Glycine max/genética , Glycine max/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo
8.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269637

RESUMO

Photoperiodic flowering is an important agronomic trait that determines adaptability and yield in soybean and is strongly influenced by FLOWERING LOCUS T (FT) genes. Due to the presence of multiple FT homologs in the genome, their functions in soybean are not fully understood. Here, we show that GmFT3b exhibits functional redundancy in regulating soybean photoperiodic flowering. Bioinformatic analysis revealed that GmFT3b is a typical floral inducer FT homolog and that the protein is localized to the nucleus. Moreover, GmFT3b expression was induced by photoperiod and circadian rhythm and was more responsive to long-day (LD) conditions. We generated a homozygous ft3b knockout and three GmFT3b-overexpressing soybean lines for evaluation under different photoperiods. There were no significant differences in flowering time between the wild-type, the GmFT3b overexpressors, and the ft3b knockouts under natural long-day, short-day, or LD conditions. Although the downstream flowering-related genes GmFUL1 (a, b), GmAP1d, and GmLFY1 were slightly down-regulated in ft3b plants, the floral inducers GmFT5a and GmFT5b were highly expressed, indicating potential compensation for the loss of GmFT3b. We suggest that GmFT3b acts redundantly in flowering time regulation and may be compensated by other FT homologs in soybean.


Assuntos
Flores , Glycine max , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
9.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077363

RESUMO

Pseudo-response regulator (PRR) family members serve as key components of the core clock of the circadian clock, and play important roles in photoperiodic flowering, stress tolerance, growth, and the development of plants. In this study, 14 soybean PRR genes were identified, and classified into three groups according to phylogenetic analysis and structural characteristics. Real-time quantitative PCR analysis revealed that 13 GmPRRs exhibited obvious rhythmic expression under long-day (LD) and short-day (SD) conditions, and the expression of 12 GmPRRs was higher under LD in leaves. To evaluate the effects of natural variations in GmPRR alleles on soybean adaptation, we examined the sequences of GmPRRs among 207 varieties collected across China and the US, investigated the flowering phenotypes in six environments, and analyzed the geographical distributions of the major haplotypes. The results showed that a majority of non-synonymous mutations in the coding region were associated with flowering time, and we found that the nonsense mutations resulting in deletion of the CCT domain were related to early flowering. Haplotype analysis demonstrated that the haplotypes associated with early flowering were mostly distributed in Northeast China, while the haplotypes associated with late flowering were mostly cultivated in the lower latitudes of China. Our study of PRR family genes in soybean provides not only an important guide for characterizing the circadian clock-controlled flowering pathway but also a theoretical basis and opportunities to breed varieties with adaptation to specific regions and farming systems.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Flores , Genômica , Fotoperíodo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
10.
BMC Genomics ; 22(1): 529, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246232

RESUMO

BACKGROUND: In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. RESULTS: We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. CONCLUSIONS: These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Proteínas de Arabidopsis/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Dissecação , Regulação da Expressão Gênica de Plantas , Glycine max/genética
11.
Plant Cell Environ ; 44(8): 2551-2564, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34050544

RESUMO

Soybean (Glycine max), a typical short-day plant (SDP) domesticated in temperate regions, has expanded to high latitudes where daylengths are long from soybean emergence to bloom, but rapidly decrease from seed filling to maturity. Cotyledons are well known as the major storage organs in seeds, but it is unclear whether developing cotyledons store flowering substances at filling stage in SD for upcoming seedlings, or instead respond to photoperiod for floral induction after emergence of matured seeds in long-day (LD). Here, we report that cotyledons accelerate flowering of early-maturing varieties not resulting from stored floral stimuli but by perceiving photoperiod after emergence. We found that light signal is indispensable to activate cotyledons for floral induction, and flowering promoting gene GmFT2a is required for cotyledon-dependent floral induction via upregulation of floral identity gene GmAP1. Interestingly, cotyledons are competent to support the entire life cycle of a cotyledon-only plant to produce seeds, underlying a new photoperiod study system in soybean and other dicots. Taken together, these results demonstrate a substantial role for cotyledons in flowering process, whereby we propose a 'cotyledon-based self-reliance' model highlighting floral induction from emergence as a key ecological adaptation for rapid flowering of SDPs grown in LD environments at high latitudes.


Assuntos
Adaptação Fisiológica , Cotilédone/fisiologia , Glycine max/fisiologia , China , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Luz , Fotoperíodo , Plantas Geneticamente Modificadas , Proteínas de Soja/genética
12.
Bioorg Med Chem Lett ; 31: 127712, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246108

RESUMO

Tropomyosin receptor kinases (Trks), a transmembrane receptor tyrosine kinases, have attracted more and more attention as a drug target. Here we reported the structure-based synthesis and biological evaluation of novel pyrazolo[1,5-a]pyrimidine derivatives as Trk inhibitors, which exhibited potent Trk inhibitory activities. Particularly, compounds 8a, 8f, 9a, 9b and 9f (IC50 < 5 nM) showed significant inhibitory potency against Trk.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
13.
Plant Cell Rep ; 40(10): 1875-1888, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34272585

RESUMO

KEY MESSAGE: GmFULa improved soybean yield by enhancing carbon assimilation. Meanwhile, different from known yield-related genes, it did not alter flowering time or maturity. Soybean (Glycine max (L.) Merr.) is highly demanded by a continuously growing human population. However, increasing soybean yield is a major challenge. FRUITFULL (FUL), a MADS-box transcription factor, plays important roles in multiple developmental processes, especially fruit and pod development, which are crucial for soybean yield formation. However, the functions of its homologs in soybean are not clear. Here, through haplotype analysis, we found that one haplotype of the soybean homolog GmFULa (GmFULa-H02) is dominant in cultivated soybeans, suggesting that GmFULa-H02 was highly selected during domestication and varietal improvement of soybean. Interestingly, transgenic overexpression of GmFULa enhanced vegetative growth with more biomass accumulated and ultimately increased the yield but without affecting the plant height or changing the flowering time and maturity, indicating that it enhances the efficiency of dry matter accumulation. It also promoted the yield factors like branch number, pod number and 100-seed weight, which ultimately increased the yield. It increased the palisade tissue cell number and the chlorophyll content to promote photosynthesis and increase the soluble sugar content in leaves and fresh seeds. Furthermore, GmFULa were found to be sublocalized in the nucleus and positively regulate sucrose synthases (SUSs) and sucrose transporters (SUTs) by binding with the conserved CArG boxes in their promoters. Overall, these results showed GmFULa promotes the capacity of assimilation and the transport of the resultant assimilates to increase yield, and provided insights into the link between GmFULa and sucrose synthesis with transport-related molecular pathways that control seed yield.


Assuntos
Carbono/metabolismo , Flores/fisiologia , Glycine max/genética , Proteínas de Plantas/genética , Clorofila/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Haplótipos , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sementes/genética , Sementes/metabolismo , Glycine max/fisiologia
14.
Plant Biotechnol J ; 18(9): 1869-1881, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31981443

RESUMO

Flowering time is a critical determinant of the geographic distribution and regional adaptability of soybean (Glycine max) and is strongly regulated by photoperiod and temperature. In this study, quantitative trait locus (QTL) mapping and subsequent candidate gene analysis revealed that GmPRR37, encoding a pseudo-response regulator protein, is responsible for the major QTL qFT12-2, which was identified from a population of 308 recombinant inbred lines (RILs) derived from a cross between a very late-flowering soybean cultivar, 'Zigongdongdou (ZGDD)', and an extremely early-flowering cultivar, 'Heihe27 (HH27)', in multiple environments. Comparative analysis of parental sequencing data confirmed that HH27 contains a non-sense mutation that causes the loss of the CCT domain in the GmPRR37 protein. CRISPR/Cas9-induced Gmprr37-ZGDD mutants in soybean exhibited early flowering under natural long-day (NLD) conditions. Overexpression of GmPRR37 significantly delayed the flowering of transgenic soybean plants compared with wild-type under long photoperiod conditions. In addition, both the knockout and overexpression of GmPRR37 in soybean showed no significant phenotypic alterations in flowering time under short-day (SD) conditions. Furthermore, GmPRR37 down-regulated the expression of the flowering-promoting FT homologues GmFT2a and GmFT5a, and up-regulated flowering-inhibiting FT homologue GmFT1a expression under long-day (LD) conditions. We analysed haplotypes of GmPRR37 among 180 cultivars collected across China and found natural Gmprr37 mutants flower earlier and enable soybean to be cultivated at higher latitudes. This study demonstrates that GmPRR37 controls soybean photoperiodic flowering and provides opportunities to breed optimized cultivars with adaptation to specific regions and farming systems.


Assuntos
Glycine max , Fotoperíodo , Sistemas CRISPR-Cas/genética , China , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo
15.
Plant Biotechnol J ; 18(1): 298-309, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31240772

RESUMO

Flowering time is a key agronomic trait that directly influences the successful adaptation of soybean (Glycine max) to diverse latitudes and farming systems. GmFT2a and GmFT5a have been extensively identified as flowering activators and integrators in soybean. Here, we identified two quantitative trait loci (QTLs) regions harbouring GmFT2a and GmFT5a, respectively, associated with different genetic effects on flowering under different photoperiods. We analysed the flowering time of transgenic plants overexpressing GmFT2a or GmFT5a, ft2a mutants, ft5a mutants and ft2aft5a double mutants under long-day (LD) and short-day (SD) conditions. We confirmed that GmFT2a and GmFT5a are not redundant, they collectively regulate flowering time, and the effect of GmFT2a is more prominent than that of GmFT5a under SD conditions whereas GmFT5a has more significant effects than GmFT2a under LD conditions. GmFT5a, not GmFT2a, was essential for soybean to adapt to high latitude regions. The ft2aft5a double mutants showed late flowering by about 31.3 days under SD conditions and produced significantly increased numbers of pods and seeds per plant compared to the wild type. We speculate that these mutants may have enormous yield potential for the tropics. In addition, we examined the sequences of these two loci in 202 soybean accessions and investigated the flowering phenotypes, geographical distributions and maturity groups within major haplotypes. These results will contribute to soybean breeding and regional adaptability.


Assuntos
Sistemas CRISPR-Cas , Flores/crescimento & desenvolvimento , Glycine max/genética , Locos de Características Quantitativas , Adaptação Biológica/genética , Mutagênese , Fotoperíodo , Proteínas de Plantas/genética
16.
Plant Cell Environ ; 43(4): 934-944, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31981430

RESUMO

Day length has an important influence on flowering and growth habit in many plant species. In crops such as soybean, photoperiod sensitivity determines the geographical range over which a given cultivar can grow and flower. The soybean genome contains ~10 genes homologous to FT, a central regulator of flowering from Arabidopsis thaliana. However, the precise roles of these soybean FTs are not clearly. Here we show that one such gene, GmFT2b, promotes flowering under long-days (LDs). Overexpression of GmFT2b upregulates expression of flowering-related genes which are important in regulating flowering time. We propose a 'weight' model for soybean flowering under short-day (SD) and LD conditions. Furthermore, we examine GmFT2b sequences in 195 soybean cultivars, as well as flowering phenotypes, geographical distributions and maturity groups. We found that Hap3, a major GmFT2b haplotype, is associated with significantly earlier flowering at higher latitudes. We anticipate our assay to provide important resources for the genetic improvement of soybean, including new germplasm for soybean breeding, and also increase our understanding of functional diversity in the soybean FT gene family.


Assuntos
Glycine max/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Clonagem Molecular , Flores/crescimento & desenvolvimento , Edição de Genes , Regulação da Expressão Gênica de Plantas/genética , Variação Genética/genética , Variação Genética/fisiologia , Geografia , Fotoperíodo , Proteínas de Plantas/fisiologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Transcriptoma
17.
Theor Appl Genet ; 133(5): 1655-1678, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31646364

RESUMO

It has been commonly accepted that soybean domestication originated in East Asia. Although East Asia has the historical merit in soybean production, the USA has become the top soybean producer in the world since 1950s. Following that, Brazil and Argentina have been the major soybean producers since 1970s and 1990s, respectively. China has once been the exporter of soybean to Japan before 1990s, yet she became a net soybean importer as Japan and the Republic of Korea do. Furthermore, the soybean yield per unit area in East Asia has stagnated during the past decade. To improve soybean production and enhance food security in these East Asian countries, much investment has been made, especially in the breeding of better performing soybean germplasms. As a result, China, Japan, and the Republic of Korea have become three important centers for soybean genomic research. With new technologies, the rate and precision of the identification of important genomic loci associated with desired traits from germplasm collections or mutants have increased significantly. Genome editing on soybean is also becoming more established. The year 2019 marked a new era for crop genome editing in the commercialization of the first genome-edited plant product, which is a high-oleic-acid soybean oil. In this review, we have summarized the latest developments in soybean breeding technologies and the remarkable progress in soybean breeding-related research in China, Japan, and the Republic of Korea.


Assuntos
Genoma de Planta , Genômica/métodos , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Melhoramento Vegetal/normas , Plantas Geneticamente Modificadas/genética , Ásia Oriental , Fenótipo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
18.
BMC Genomics ; 20(1): 230, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894121

RESUMO

BACKGROUND: Flowering time and maturity are among the most important adaptive traits in soybean (Glycine max (L.) Merill). Flowering Locus T (FT) family genes function as key flowering integrators, with flowering-promoting members GmFT2a/GmFT5a and flowering-inhibiting members GmFT4/GmFT1a antagonistically regulating vegetative and reproductive growth. However, to date, the relations between natural variations of FT family genes and the diversity of flowering time and maturity in soybean are not clear. Therefore, we conducted this study to discover natural variations in FT family genes in association with flowering time and maturity. RESULTS: Ten FT family genes, GmFT1a, GmFT1b, GmFT2a, GmFT2b, GmFT3a, GmFT3b, GmFT4, GmFT5a, GmFT5b and GmFT6, were cloned and sequenced in the 127 varieties evenly covering all 14 known maturity groups (MG0000-MGX). They were diversified at the genome sequence polymorphism level. GmFT3b and GmFT5b might have experienced breeding selection in the process of soybean domestication and breeding. Haplotype analysis showed that a total of 17 haplotypes had correlative relationships with flowering time and maturity among the 10 FT genes, namely, 1a-H3, 1b-H1, 1b-H6, 1b-H7, 2a-H1, 2a-H3, 2a-H4, 2a-H9, 2b-H3, 2b-H4, 2b-H6, 2b-H7, 3b-H4, 5a-H1, 5a-H2, 5a-H4 and 5b-H1. Based on the association analysis, 38 polymorphic sites had a significant association with flowering time at the level of p < 0.01. CONCLUSIONS: Some natural variations exist within the 10 FT family genes, which might be involved in soybean adaptation to different environments and have an influence on diverse flowering time and maturity. This study will facilitate the understanding of the roles of FTs in flowering and maturity.


Assuntos
Variação Genética , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Proteínas de Plantas/genética , Haplótipos , Polimorfismo Genético , Fatores de Tempo
19.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775326

RESUMO

Soybean is an excellent source of vegetable protein and edible oil. Understanding the genetic basis of protein and oil content will improve the breeding programs for soybean. Linkage analysis and genome-wide association study (GWAS) tools were combined to detect quantitative trait loci (QTL) that are associated with protein and oil content in soybean. Three hundred and eight recombinant inbred lines (RILs) containing 3454 single nucleotide polymorphism (SNP) markers and 200 soybean accessions, including 94,462 SNPs and indels, were applied to identify QTL intervals and significant SNP loci. Intervals on chromosomes 1, 15, and 20 were correlated with both traits, and QTL qPro15-1, qPro20-1, and qOil5-1 reproducibly correlated with large phenotypic variations. SNP loci on chromosome 20 that overlapped with qPro20-1 were reproducibly connected to both traits by GWAS (p < 10-4). Twenty-five candidate genes with putative roles in protein and/or oil metabolisms within two regions (qPro15-1, qPro20-1) were identified, and eight of these genes showed differential expressions in parent lines during late reproductive growth stages, consistent with a role in controlling protein and oil content. The new well-defined QTL should significantly improve molecular breeding programs, and the identified candidate genes may help elucidate the mechanisms of protein and oil biosynthesis.


Assuntos
Ligação Genética , Estudo de Associação Genômica Ampla , Glycine max/genética , Óleos de Plantas/metabolismo , Locos de Características Quantitativas , Sementes/genética , Proteínas de Soja/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genoma de Planta , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Sementes/metabolismo , Proteínas de Soja/metabolismo , Glycine max/metabolismo
20.
J Sci Food Agric ; 99(6): 2802-2807, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30430593

RESUMO

BACKGROUND: Lunasin is a novel therapeutic peptide that was initially isolated from soybean. In this study, we quantified the variations in lunasin content in a total of 413 soybean samples that were collected from four major regions in China and harvested in 2014 and 2015 to reveal the regional distribution of soybean lunasin content in China and the effects of climate factors. RESULTS: The results showed that the cultivar Changmidou 30 collected from Jilin province and harvested in 2015 had the highest lunasin content (3.25 g kg-1 dry seeds). The data from both 2014 and 2015 showed that the lunasin content in soybean collected from northern China was significantly higher (P < 0.05) than that from south China. There was a positive correlation (P < 0.01) between lunasin content and hours of sunshine (HS) as well as diurnal temperature range (DTR); however, there was a negative correlation (P < 0.01) between lunasin content and rainfall (RF). In addition, combined analysis of data from 2014 and 2015 demonstrated that DTR was the dominant factor that affected lunasin content with a direct path-coefficient of 0.301. CONCLUSIONS: These results were anticipated to contribute to guiding the cultivation of soybean with high lunasin content. © 2018 Society of Chemical Industry.


Assuntos
Agricultura , Clima , Glycine max/metabolismo , Proteínas de Soja/metabolismo , China , Proteínas de Soja/química , Glycine max/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA