Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagn Microbiol Infect Dis ; 109(4): 116375, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38796934

RESUMO

We described a case of a 24-year-old man with multiple organ failure caused by Fusobacterium necrophorum subsp. funduliforme F1260. This is the first described case of Lemierre's syndrome with multiple organ failure due to F. necrophorum subsp. funduliforme F1260 in an adult in China. Our study highlights that there may be a risk of misdiagnosis based solely on typical manifestations of internal jugular vein thrombophlebitis, metastatic lesions, and F. necrophorum isolated from blood cultures or normally sterile sites. Clinicians should be cognizant of the potential utility of metagenomic next-generation sequencing in facilitating early pathogen detection in severe infections, thus enabling timely and appropriate administration of antibiotics to reduce mortality rates and improve prognosis.


Assuntos
Fusobacterium necrophorum , Síndrome de Lemierre , Insuficiência de Múltiplos Órgãos , Humanos , Masculino , Fusobacterium necrophorum/isolamento & purificação , Fusobacterium necrophorum/genética , Síndrome de Lemierre/microbiologia , Síndrome de Lemierre/diagnóstico , Síndrome de Lemierre/tratamento farmacológico , Síndrome de Lemierre/complicações , Adulto Jovem , Antibacterianos/uso terapêutico , China , Sequenciamento de Nucleotídeos em Larga Escala
2.
Exp Ther Med ; 27(1): 37, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38125360

RESUMO

Spinal cord injury (SCI) is a devastating event that often leads to severe disability, and effective treatments for SCI are currently limited. The present study investigated the potential effects and specific mechanisms of melatonin treatment in SCI. Mice were divided into Sham (Sham), Vehicle (Veh), Melatonin (Mel), and Melatonin + 4-phenyl-2-propionamidotetralin (4P-PDOT) (Mel + 4PP) groups based on randomized allocation. The expression of MT2 and the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Keap1 signaling pathways were examined, along with oxidative stress indicators, inflammatory factors and GFAP-positive cells near the injury site. The polarization of microglial cells in different inflammatory microenvironments was also observed. Cell survival, motor function recovery and spinal cord tissue morphology were assessed using staining and Basso Mouse Scale scores. On day 7 after SCI, the results revealed that melatonin treatment increased MT2 protein expression and activated the Nrf2/Keap1 signaling pathway. It also reduced GFAP-positive cells, mitigated oxidative stress, and suppressed inflammatory responses around the injury site. Furthermore, melatonin treatment promoted the polarization of microglia toward the M2 type, increased the number of neutrophil-positive cells, and modulated the transcription of Bax and Bcl2 in the injured spinal cord. Melatonin treatment alleviated the severity of spinal injuries and facilitated functional recovery in mice with SCI. Notably, blocking MT2 with 4P-PDOT partially reversed the neuroprotective effects of melatonin in SCI, indicating that the activation of the MT2/Nrf2/Keap1 signaling pathway contributes to the neuroprotective properties of melatonin in SCI. The therapeutic and translational potentials of melatonin in SCI warrant further investigation.

3.
Front Oncol ; 14: 1352845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136000

RESUMO

Colorectal cancer (CRC) is one of the most common cancers, with a high mortality rate worldwide. Mounting evidence indicates that mRNA modifications are crucial in RNA metabolism, transcription, processing, splicing, degradation, and translation. Studies show that N6-methyladenosine (m6A) is mammalians' most common epi-transcriptomic modification. It has been demonstrated that m6A is involved in cancer formation, progression, invasion, and metastasis, suggesting it could be a potential biomarker for CRC diagnosis and developing therapeutics. Cytokines, growth factors, and hormones function in JAK/STAT3/5 signaling pathway, and they could regulate the intestinal response to infection, inflammation, and tumorigenesis. Reports show that the JAK/STAT3/5 pathway is involved in CRC development. However, the underlying mechanism is still unclear. Signal Transducer and Activator of Transcription 3/5 (STAT3, STAT5) can act as oncogenes or tumor suppressors in the context of tissue types. Also, epigenetic modifications and mutations could alter the balance between pro-oncogenic and tumor suppressor activities of the STAT3/5 signaling pathway. Thus, exploring the interaction of cytokines-JAKs-STAT3 and/or STAT5 with mRNA m6A is of great interest. This review provides a comprehensive overview of the characteristics and functions of m6A and JAKs-STAT3/5 and their relationship with gastrointestinal (GI) cancers.

4.
CNS Neurosci Ther ; 30(3): e14593, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38528832

RESUMO

BACKGROUND: Inflammation can worsen spinal cord injury (SCI), with dendritic cells (DCs) playing a crucial role in the inflammatory response. They mediate T lymphocyte differentiation, activate microglia, and release cytokines like NT-3. Moreover, DCs can promote neural stem cell survival and guide them toward neuron differentiation, positively impacting SCI outcomes. OBJECTIVE: This review aims to summarize the role of DCs in SCI-related inflammation and identify potential therapeutic targets for treating SCI. METHODS: Literature in PubMed and Web of Science was reviewed using critical terms related to DCs and SCI. RESULTS: The study indicates that DCs can activate microglia and astrocytes, promote T-cell differentiation, increase neurotrophin release at the injury site, and subsequently reduce secondary brain injury and enhance functional recovery in the spinal cord. CONCLUSIONS: This review highlights the repair mechanisms of DCs and their potential therapeutic potential for SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Medula Espinal , Microglia , Inflamação/complicações , Células Dendríticas
5.
CNS Neurosci Ther ; 30(6): e14781, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887195

RESUMO

BACKGROUND: Traumatic brain injury (TBI) and spinal cord injury (SCI) are acquired injuries to the central nervous system (CNS) caused by external forces that cause temporary or permanent sensory and motor impairments and the potential for long-term disability or even death. These conditions currently lack effective treatments and impose substantial physical, social, and economic burdens on millions of people and families worldwide. TBI and SCI involve intricate pathological mechanisms, and the inflammatory response contributes significantly to secondary injury in TBI and SCI. It plays a crucial role in prolonging the post-CNS trauma period and becomes a focal point for a potential therapeutic intervention. Previous research on the inflammatory response has traditionally concentrated on glial cells, such as astrocytes and microglia. However, increasing evidence highlights the crucial involvement of lymphocytes in the inflammatory response to CNS injury, particularly CD8+ T cells and NK cells, along with their downstream XCL1-XCR1 axis. OBJECTIVE: This review aims to provide an overview of the role of the XCL1-XCR1 axis and the T-cell response in inflammation caused by TBI and SCI and identify potential targets for therapy. METHODS: We conducted a comprehensive search of PubMed and Web of Science using relevant keywords related to the XCL1-XCR1 axis, T-cell response, TBI, and SCI. RESULTS: This study examines the upstream and downstream pathways involved in inflammation caused by TBI and SCI, including interleukin-15 (IL-15), interleukin-12 (IL-12), CD8+ T cells, CD4+ T cells, NK cells, XCL1, XCR1+ dendritic cells, interferon-gamma (IFN-γ), helper T0 cells (Th0 cells), helper T1 cells (Th1 cells), and helper T17 cells (Th17 cells). We describe their proinflammatory effect in TBI and SCI. CONCLUSIONS: The findings suggest that the XCL1-XCR1 axis and the T-cell response have great potential for preclinical investigations and treatments for TBI and SCI.


Assuntos
Lesões Encefálicas Traumáticas , Quimiocinas C , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Animais , Quimiocinas C/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Doenças Neuroinflamatórias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA