Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMC Pulm Med ; 24(1): 137, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500104

RESUMO

BACKGROUND: Yanghe Pingchuan decoction (YPD) has been used for asthma treatment for many years in China. We sought to understand the mechanism of YPD, and find more potential targets for YPD-based treatment of asthma. METHODS: An ovalbumin-induced asthma model in rats was created. Staining (hematoxylin and eosin, Masson) was used to evaluate the treatment effect of YPD. RNA-sequencing was carried out to analyze global gene expression, and differentially expressed genes (DEGs) were identified. Analysis of the functional enrichment of genes was done using the Gene Ontology database (GO). Analysis of signaling-pathway enrichment of genes was done using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Real-time reverse transcription-quantitative polymerase chain reaction was undertaken to measure expression of DEGs. RESULTS: Pathology showed that YPD had an improvement effect on rats with asthma. RNA-sequencing showed that YPD led to upregulated and downregulated expression of many genes. The YPD-based control of asthma pathogenesis may be related to calcium ion (Ca2+) binding, inorganic cation transmembrane transporter activity, microtubule motor activity, and control of canonical signaling (e.g., peroxisome proliferator-activated receptor, calcium, cyclic adenosine monophosphate). Enrichment analyses suggested that asthma pathogenesis may be related to Ca2 + binding and contraction of vascular smooth muscle. A validation experiment showed that YPD could reduce the Ca2 + concentration by inhibiting the Angiopoietin-II (Ang-II)/Phospholipase (PLA)/calmodulin (CaM0 signaling axis. CONCLUSION: Control of asthma pathogenesis by YPD may be related to inhibition of the Ang-II/PLA/CaM signaling axis, reduction of the Ca2+ concentration, and relaxation of airway smooth muscle (ASM).


Assuntos
Asma , Cálcio , Medicamentos de Ervas Chinesas , Ratos , Animais , Cálcio/efeitos adversos , Asma/tratamento farmacológico , Asma/genética , Asma/metabolismo , RNA/efeitos adversos , Expressão Gênica , Poliésteres/efeitos adversos
2.
J Recept Signal Transduct Res ; 42(3): 302-312, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34151713

RESUMO

Emodin has been shown to exert a renoprotective effect in diabetic nephropathy (DN). In this paper, we investigated whether circular RNAs (circRNAs) might be involved in the renoprotective mechanism of emodin in DN. The levels of malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD), interleukin-1ß (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) were measured using the corresponding assay kits. The expression levels of circ_0000064, microRNA (miR)-30c-5p, large multifunctional protease 7 (Lmp7), fibronectin (FN), and collagen type I (Col.1) were gauged by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Subcellular localization assay was used to assess the cellular localization of circ_0000064. Targeted relationships among circ_0000064, miR-30c-5p and Lmp7 were confirmed by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation (RIP) assays. Our data showed the alleviative effect of emodin on HG-induced oxidative stress, inflammation and extracellular matrix (ECM) accumulation in SV-MES13 cells. Circ_0000064 was an importantly downstream effector of emodin function in HG-induced SV40-MES13 cells. Moreover, circ_0000064 directly targeted miR-30c-5p, and circ_0000064 modulated Lmp7 expression through miR-30c-5p. Circ_0000064 silencing alleviated HG-induced cell oxidative stress, inflammation and ECM accumulation via up-regulating miR-30c-5p. The enforced expression of miR-30c-5p attenuated HG-induced oxidative stress, inflammation and ECM accumulation in SV40-MES13 cells by targeting Lmp7. Our findings identified that emodin alleviated HG-induced oxidative stress, inflammation and ECM accumulation in SV40-MES13 cells at least partially by the regulation of the circ_0000064/miR-30c-5p/Lmp7 axis.


Assuntos
Nefropatias Diabéticas , Emodina , MicroRNAs , Complexo de Endopeptidases do Proteassoma , RNA Circular , Linhagem Celular , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Emodina/farmacologia , Matriz Extracelular/genética , Glucose/efeitos adversos , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Células Mesangiais/efeitos dos fármacos , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Complexo de Endopeptidases do Proteassoma/genética , RNA Circular/genética
3.
Mediators Inflamm ; 2022: 6561048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091667

RESUMO

Bronchial asthma (BA) is a chronic inflammatory disease of the airway. Previous research has shown that Yanghe Pingchuan granules (YPGs) exert a precise therapeutic effect on BA. In our previous work, we showed that YPGs improved inflammation of the airways in rat models of BA. Other studies have shown that the pathogenesis of BA is closely related to pyroptosis and that the TOLL-like receptor pathway plays a key role in the mediation of pyroptosis. Therefore, in the present study, we established a rat model of BA by applying the concept of pyroptosis and used the TLR4/NF-κB/NRLP3 signaling pathway as the target and YPGs as the treatment method. We evaluated the effects of YPGs on airway inflammation and pyroptosis in the model rats by HE staining, Masson's staining, AP-PAS staining, western blotting, and real-time quantitative PCR. The results showed that Yanghe Pingchuan granules could significantly improve the inflammatory response of bronchial tissue in BA rats, reduce the content of inflammatory factors IL-1ß and IL-18, and inhibit the expression of pyroptosis factor. Meanwhile, YPG can block the TLR4/NF-κB signaling pathway. These findings suggest that YPG may be an effective drug for the treatment of BA by blocking the TLR4/NF-κB signaling pathway and inhibiting pyroptosis.


Assuntos
Asma , NF-kappa B , Animais , Asma/tratamento farmacológico , Medicamentos de Ervas Chinesas , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Piroptose , Ratos , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
4.
Zhongguo Zhong Yao Za Zhi ; 45(13): 3144-3154, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32726023

RESUMO

To reveal the processing mechanism of Chrysanthemi Flos from the changes of chemical compositions after frying and its effect on the efficacy of liver protection. Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry(UPLC-Q-TOF-MS) and ultra high performance liquid chromatography(HPLC) were used for the qualitative and quantitative researches of chemical compositions before and after Chrysanthemi Flos frying. Progenesis QI and SPSS software were used for principal component analysis(PCA), partial least squares discriminant analysis(PLS-DA), variable importance projection(VIP) analysis and t-test to identify the compositions with significant changes. Pharmacodynamics experiment was used to investigate the protective effect of crude and fried Chrysanthemi Flos on CCl_4-induced acute liver injury in mice. According to mass spectrometry data, there were 28 chemical compositions in crude and fried Chrysanthemi Flos, mainly including flavonoids and organic acids. 13 compositions such as luteolin, apigenin and luteolin glycoside were increased significantly after frying, while 7 compositions such as chlorogenic acid, luteolin-7-O-glucuronide and apigenin-7-O-glucuronide were decreased significantly after frying. Through principal component analysis, crude and fried Chrysanthemi Flos products were divided into two categories, indicating that there were internal differences in quality. The results of liver injury protection experiment in mice showed that the AST, ALT and MDA contents were significantly decreased and SOD level was increased in mice with liver injury in both the high and medium dose groups. Histopathological examination showed that crude and fried Chrysanthemi Flos can protect the liver by reducing inflammatory cell infiltration, reducing steatosis, and repairing damaged liver cells. The results of this study showed that the chemical compositions had obvious changes after frying, and both crude and fried Chrysanthemis Flos had protective effects on CCl_4-induced acute liver injury in mice. In addition, in the range of high, medium and low doses, the liver protection effect of crude and fried Chrysanthemi Flos increased with the increase of dose. The experiment results provided reference for the mechanism of fried Chrysanthemi Flos and clinical selection of processed products.


Assuntos
Chrysanthemum , Animais , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flores/química , Fígado/química , Camundongos
5.
Zhongguo Zhong Yao Za Zhi ; 42(9): 1782-1786, 2017 May.
Artigo em Chinês | MEDLINE | ID: mdl-29082707

RESUMO

To conduct multiple-reaction monitoring(MRM) quantitative analysis with ultra-high performance liquid chromatography coupled with mass spectrometry method(UPLC-MS/MS), determine the concentrations of psoralen, isopsoralen, bakuchiol and dehydrodiisoeugenol in plasma under positive iron mode with chloramghenicol as internal standard, and investigate the pharmacokinetics process of the main components before and after oral administration of drug pair Psoralea corylifolia -Myristica fragrants. Thirty-six SD rats were randomly divided into three group(A, B, C) and received P. corylifolia extract, P. corylifolia-M. fragrants extract, and M. fragrants extract respectively by intragastric administration. The plasma samples were collected at different time points. In the plasma samples, psoralen, isopsoralen, bakuchiol and dehydrodiisoeugenol showed good linear relationship within concentration rages of 0.098 125 to 39.25, 0.084 37 to 33.75, 0.046 875 to 18.75, and 0.11 to 2.2 mg•L⁻¹ respectively. The precision and stability results showed that the determination method of plasma concentration for such compositions was stable and reliable. The pharmacokinetic parameters obtained by DAS 2.0 showed varying differences before and after compatibility. According to the experimental results, the compatibility of P. corylifolia and M. fragrants can significantly impact the pharmacokinetic process of main components, expand their distribution and accelerate their metabolism and elimination in vivo.


Assuntos
Medicamentos de Ervas Chinesas/farmacocinética , Eugenol/análogos & derivados , Ficusina/farmacocinética , Myristica/química , Fenóis/farmacocinética , Psoralea/química , Animais , Cromatografia Líquida de Alta Pressão , Eugenol/sangue , Eugenol/farmacocinética , Ficusina/sangue , Furocumarinas/sangue , Furocumarinas/farmacocinética , Fenóis/sangue , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
6.
J Tradit Chin Med ; 36(2): 217-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27400477

RESUMO

OBJECTIVE: To investigate the inhibitory effect of Panax notoginseng saponins (PNS) on liver fibrosis and explore the underlying mechanisms. METHODS: Carbon tetrachloride (CCl4)-treated rats and hepatic stellate cells (HSCs) were used. The effect of PNS on CCl4-induced liver fibrosis was studied with histochemical and biochemical analysis. Transforming growth factor (TGF)-ß1, α-smooth muscle actin (α-SMA), and collagen I mRNA expression were determined by reverse transcripwhile, the protein expression levels of α-SMA, collagen I, phosphorylation-Janus activated kinase signal transducer (p-Jak2)/Jak2, and phosphorylation-activator of transcription (p-Stat)3/Stat3 were determined by immunohistochemistry and/or immunoblotting. RESULTS: PNS treatment significantly improved the liver function of rats as indicated by decreased serum enzymatic activities of alanine aminotransferase and aspartate aminotransferase. Histopathological results indicated that PNS alleviated liver damage and reduced the formation of fibrous septa. Moreover, PNS significantly decreased liver hydroxyproline and significantly attenuated expressions of collagen I, α-SMA, TGF-ß1, p-Jak2 / Jak2, and p-Stat3/Stat3 in the rat liver fibrosis model and HSCs. CONCLUSION: PNS can relieve liver fibrosis by modulating Jak2/Stat3 signaling transduction pathway, which may be one of its mechanisms to suppress hepatic fibrosis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Células Estreladas do Fígado/citologia , Janus Quinase 2/metabolismo , Cirrose Hepática/tratamento farmacológico , Panax notoginseng/química , Fator de Transcrição STAT3/metabolismo , Saponinas/administração & dosagem , Animais , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Janus Quinase 2/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos
7.
Zhongguo Zhong Yao Za Zhi ; 41(12): 2321-2328, 2016 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-28901080

RESUMO

To observe the effect of total saponins of Clematidis Radix et Rhizoma (TSCR) on serum metabolic profile changes in adjuvant arthritis(AA) rats, and explore its possible action mechanism for AA rats. The AA rat models were induced by Freund's complete adjuvant(FCA), and their histopathological changes were observed. Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS), principal component analysis(PCA) and partial least squares-discriminant analysis (PLS-DA) were employed to analyze the metabolic profile among normal group, AA model group and TSCR group. Potential biomarkers in the serum were screened based on the variable importance projection(VIP) value>1, P<0.05. As compared with the normal group, 17 potential biomarkers such as aspartic acid, inositol and phenylacetaldehyde were found and identified in the serum of model group rats. As compared with the model group, the above biomarkers were regulated nearly to a normal state after TSCR administration for 16 days. Metabolomic analysis revealed that the total saponins of Clematidis Radix et Rhizoma has a certain therapeutic effect for AA rats, and the mechanism may be related to regulation of lipid metabolism, amino acid metabolism and energy metabolism.


Assuntos
Artrite Experimental/tratamento farmacológico , Clematis/química , Medicamentos de Ervas Chinesas/farmacologia , Metaboloma , Saponinas/farmacologia , Animais , Artrite Experimental/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Ratos , Rizoma/química
8.
Zhong Yao Cai ; 38(9): 1959-63, 2015 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-26930989

RESUMO

OBJECTIVE: To study the simultaneous determination method of daodi Psoraleae Fructus-Myristicae Semen Chinese drug pair for the seven ingredients, and Psoraleae Fructus-Myristicae Semen Chinese drug pair on the chemical composition of initial ownership and identification. METHODS: UPLC BEH C18 column (2.1 mm x 100 mm, 1.7 µm) was used in the determination. The flow rate was kept at 0.25 mL/min, and 2 µL of standard and sample solution were injected in each run. The mobile phase was consisted of acetonitrile and water using a gradient elution. The UPLC/Q-TOF MS condition: Waters HSS T3 (100 mm x 2.1 mm,1.7 µm); capillary voltage 3.0 kV (positive ion mode) and 2.5 kV (negative ion mode); Mass spectrometric detection was carried out on a Waters Xevo G2 Q/ TOF mass spectrometer equipped with an ESI source operating in both positive and negative ion modes. The parameters of the mass spectrometer under the ESI mode were as follows: ion source temperature 110 °C, cone gas flow 50 L/h, desolvation gas temperature 450 °C, desolvation gas flow 800 L/h. RESULTS: The seven chemical markers in the selected linear range had good linearity. The recoveries were in the range of 95.07%-98.16% and RSDs were between 1.23%-1.97%. CONCLUSION: It is suitable for the quality control and further studies of the herb in vivo of daodi Psoraleae Fructus-Myristicae Semen Chinese drug pair.


Assuntos
Medicamentos de Ervas Chinesas/química , Frutas/química , Myristicaceae/química , Psoralea/química , Sementes/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
9.
Zhongguo Zhong Yao Za Zhi ; 39(7): 1248-54, 2014 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-25011263

RESUMO

The experiment's aim was to optimize the processing technology of Xanthii Fructus which through comparing the difference of UPLC fingerprint and contents of toxicity ingredient in water extract of 16 batches of processed sample. The determination condition of UPLC chromatographic and contents of toxicity ingredient were as follows. UPLC chromatographic: ACQUITY BEH C18 column (2.1 mm x 100 mm, 1.7 microm) eluted with the mobile phases of acetonitrile and 0.1% phosphoric acidwater in gradient mode, the flow rate was 0.25 mL x min(-1) and the detection wavelength was set at 327 nm. Contents of toxicity ingredient: Agilent TC-C18 column (4.6 mm x 250 mm, 5 microm), mobile phase was methanol-0.01 mol x L(-1) sodium dihydrogen phosphate (35: 65), flow rate was 1.0 mL x min(-1), and detection wavelength was 203 nm. The chromatographic fingerprints 16 batches of samples were analyzed in using the similarity evaluation system of chromatographic, fingerprint of traditional Chinese medicine, SPSS16.0 and SIMCA13.0 software, respectively. The similarity degrees of the 16 batches samples were more than 0.97, all the samples were classified into four categories, and the PCA showed that the peak area of chlorogenic acid, 3,5-dicaffeoylquinic acid and caffeic acid were significantly effect index in fingerprint of processed Xanthii Fructus sample. The outcome of determination showed that the toxicity ingredient contents of all samples reduced significantly after processing. This method can be used in optimizing the processing technology of Xanthii Fructus.


Assuntos
Química Farmacêutica , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Xanthium/química , Ácidos Cafeicos/análise , Ácidos Cafeicos/toxicidade , Medicamentos de Ervas Chinesas/toxicidade , Ácido Quínico/análogos & derivados , Ácido Quínico/análise , Ácido Quínico/toxicidade , Xanthium/classificação
10.
Drug Des Devel Ther ; 18: 407-423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370565

RESUMO

Ethnopharmacological Relevance: Zishen Yutai pills (ZYP), a traditional Chinese patent medicine, was listed in China in 1981. It is composed of 15 traditional Chinese medicines and has the effects of regulating menstruation, helping pregnancy, and preventing abortion. In clinical practice, it is effective in preventing habitual and threatened miscarriages, and continuing to explore its mechanism of action is very meaningful research. Aim of the Study: To explore the possible mechanism of ZYP promoting angiogenesis at the maternal-fetal interface in recurrent spontaneous abortion (RSA). Materials and Methods: In vitro experiments, placental trophoblast cells (PTCs) were isolated from the placental tissue of RSA mice and divided into six groups: Control group, Model group, ZYP group, miR-187 inhibitor NC group, miR-18 7 inhibitor group, and miR-187 inhibitor+ZYP group. Cell viability and cell cycle were measured using CCK8 and flow cytometry, respectively. The expression levels of miR-187, VEGF, VEGF-R1, and VEGF-R2 were measured using RT-qPCR, WB, and IF staining. Animal experiments first establish an RSA mice model (CBA/J × DBA/2) and then randomly divide the mice into four groups (n=10): normal pregnancy group, RSA model group, ZYP group, and progesterone capsule group. Observed the changes in embryo absorption rate, pathological morphology of decidual tissue, and ultrastructure of vascular endothelial cells in each group of mice. RT-qPCR, WB, and IF staining methods were used to determine the expression of miR-187, VEGF, VEGF-R1, and VEGF-R2. Results: In vitro, ZYP promoted the viability of PTCs and regulated their cell cycle, and ZYP down-regulated miR-187, up-regulated VEGF, VEGF-R1 and VEGF-R2 levels. miR-187 inhibitor showed the same effects, and further ZYP intervention enhanced the effects. In vivo, ZYP remarkably reduced embryo resorption rates, and improved the pathological morphology of decidual tissues and ultrastructure of vascular endothelial cells. Moreover, ZYP down-regulated miR-187, up-regulated VEGF, VEGF-R1 and VEGF-R2. Conclusion: In summary, ZYP can regulate the expression of VEGF via miR-187, then promote the angiogenesis at the maternal-fetal interface, and playing a therapeutic role in RSA.


Assuntos
Aborto Habitual , Medicamentos de Ervas Chinesas , MicroRNAs , Animais , Feminino , Camundongos , Gravidez , Aborto Habitual/tratamento farmacológico , Aborto Habitual/metabolismo , Angiogênese , Células Endoteliais/metabolismo , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Fator A de Crescimento do Endotélio Vascular
11.
Ann Med Surg (Lond) ; 86(1): 212-218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222706

RESUMO

Background: Bronchial asthma (BA) is a chronic inflammatory airway disease. Previous research has shown that Yanghe Pingchuan granules (YPG), among the granules formulated by the First Affiliated Hospital of the Anhui University of Chinese Medicine, exerts a precise therapeutic effect on BA. We previously showed that YPG improves airway inflammation in BA rats. Other studies have shown that the inhibitor of kappa-B kinase (IKK)/inhibitor of NF-κB (IκB)/nuclear factor kappa-B (NF-κB) signalling pathway plays a key role in inflammation mediation. Therefore, this study explored whether YPG could intervene in BA through the IKK/IκB/NF-κB signalling pathway. Methods: Ovalbumin-induced method was used to established BA rat model. After successful modelling, the authors used YPG to intervene the rats in BA rats. Hematoxylin-eosin (HE) staining was used to detect the bronchial pathological changes in BA rats, enzyme-linked immunosorbent assay (ELISA) was used to detect the changes of inflammatory factors (IL-1ß and IL-6) and oxidative stress indexes malondialdehyde (MDA), superoxide dismutase (SOD) and nitrogen monoxide (NO), Quantitative real-time polymerase chain reactionCR and western blot were used to detect the expression of IKK/IκB/NF-κB signalling pathway. Results: In BA model rats, YPG significantly improved the inflammatory response in bronchial tissues, reduced inflammatory factors IL-1ß and IL-6, alleviated oxidative stress, reduced MDA and NO, and increased SOD. Quantitative real-time polymerase chain reaction and western blot results showed that YPG could block the IKK/IκB/NF-κB signalling pathway. Conclusion: These findings showed that YPG had a definite therapeutic effect on BA, which may be related to blocking the IKK/IκB/NF-κB signalling pathway and improving inflammation and oxidative stress.

12.
Zhongguo Zhong Yao Za Zhi ; 38(11): 1766-71, 2013 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-24010293

RESUMO

This study was establish an UPLC fingerprint of Xanthii Fructus from different habitats, to provide a comprehensive evaluation for its quality control. UPLC-PDA was adopted to analysis of 26 baches of Xanthii Fructus from different habitats. The chromatographic condition was as follow: ACQUITY BEH C18 Column (2.1 mm x 100 mm,1.7 microm) eluted with the mobile phases of acetonitrile and 0.1% phosphoric acid water in gradient mode. The flow rate was 0.25 mL x min(-1) and the detection wavelength was set at 220 nm. The fingerprints of 26 batches Xanthii Fructus were carried out by similarity comparation, cluster and the principal component analysis (PCA). There were nineteen common peaks, nine of which had been identified, and the similarity degrees of the twenty-six batches of the samples were between 0.804 and 0.990. All the samples were classified into six categories, and the PCA value of each fingerprint peak was calculated, and six principal components accounted for over 81. 140% of the total variance were extracted from the original data This method can be used to assess the quality of Xanthii Fructus.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Frutas/química , Xanthium/química , China , Ecossistema , Controle de Qualidade
13.
Brain Behav ; 13(12): e3325, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010098

RESUMO

INTRODUCTION: Previous studies have shown that Gandouling (GDL) may alleviate the nerve damage caused by Wilson's disease (WD) by inhibiting the autophagy of nerve cell mitochondria. However, its mechanisms are still unclear. Revealing the therapeutic mechanism of GDL is beneficial for its clinical application and provides theoretical support for the development of new formulations for treating WD. METHOD: This time we found that the oxidative stress level in the body of the copper-overloaded WD rates increased, neurons in the hippocampus were damaged, and autophagy occurred. GDL reversed these situations and significantly improved the learning, memory, and spatial cognitive abilities of the high-copper-loaded WD rates. After GDL intervention, the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated serine-threonine protein kinase (AKT), and phosphorylated forkhead box protein O1 (FoxO1) significantly increased, whereas FoxO1 in the nucleus decreased and phosphorylated FoxO1 in the cytoplasm also significantly raised. In addition, the expression of Sirt1 significantly declined, and Ac-FoxO1 in the nucleus also significantly increased. RESULTS: These data indicated that GDL may promote the phosphorylation of FoxO1 and promote its nucleation by activating the PI3K/AKT/FoxO1 signaling pathway and inhibit Ac-FoxO1 hydrolysis in the nucleus through the Sirt1/FoxO1 signaling pathway to suppress the transcriptional activity of FoxO1. CONCLUSION: Furthermore, it inhibited the expression of autophagy genes Atg12 and Gabarapl1. In summary, our work provides new insights into the potential mechanisms of GDL repairing WD neuronal damage through autophagy pathways.


Assuntos
Degeneração Hepatolenticular , Fosfatidilinositol 3-Quinase , Ratos , Animais , Fosfatidilinositol 3-Quinase/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sirtuína 1/metabolismo , Cobre , Transdução de Sinais , Autofagia
14.
Drug Des Devel Ther ; 17: 1763-1782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333964

RESUMO

Purpose: Gandouling Tablets (GDL), a proprietary Chinese medicine, have shown a preventive effect against Wilson's disease (WD)-induced neuronal damage in previous studies. However, the potential mechanisms need additional investigation. Combining metabonomics and network pharmacology revealed the GDL pathway against WD-induced neuronal damage. Methods: The WD rat model with a high copper load was developed, and nerve damage was assessed. Total metabonomics was used to identify distinct hippocampus metabolites and enriched metabolic pathways in MetaboAnalyst. The GDL's possible targets against WD neuron damage were then determined by network pharmacology. Cytoscape constructed compound metabonomics and pharmacology networks. Moreover, molecular docking and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) validated key targets. Results: GDL reduced WD-induced neuronal injury. Twenty-nine GDL-induced metabolites may protect against WD neuron injury. According to network pharmacology, we identified three essential gene clusters, of which genes in cluster 2 had the most significant impact on the metabolic pathway. A comprehensive investigation identified six crucial targets, including UGT1A1, CYP3A4, CYP2E1, CYP1A2, PIK3CB, and LPL, and their associated core metabolites and processes. Four targets reacted strongly with GDL active components. GDL therapy improved five targets' expression. Conclusion: This collaborative effort revealed the mechanisms of GDL against WD neuron damage and a way to investigate the potential pharmacological mechanisms of other Traditional Chinese Medicine (TCM).


Assuntos
Medicamentos de Ervas Chinesas , Degeneração Hepatolenticular , Ratos , Animais , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Cobre/metabolismo , Cobre/uso terapêutico , Farmacologia em Rede , Simulação de Acoplamento Molecular , Metabolômica , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
15.
Autoimmunity ; 56(1): 2189136, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36942896

RESUMO

LncRNA OIP5-AS1 has a common gene imbalance in various cancers and tumours, which plays an important role in regulating its biological function. However, there are few studies on lncRNA OIP5-AS1 in rheumatoid arthritis (RA). The purpose of the present study was to investigate the role of lncRNA OIP5-AS1 in the pathogenesis of RA. In the present study, we established an adjuvant arthritis (AA) rat model to obtain primary fibroblast-like synoviocytes (FLSs);The subcellular localisation of lncRNA OIP5-AS1 was detected by fluorescence in situ hybridisation (FISH) assay; Cell proliferation of FLSs was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay;IL-1ß, IL-6 and TNF-α concentrations were measured by enzyme-linked immunosorbent assay (ELISA);Quantitative real-time PCR (qRT-PCR), Western blots(WB) and immunofluorescence were used to detect the expression of lncRNA OIP5-AS1/miR-410-3p/wnt7b signal axis and Wnt/ß-catenin signal pathway related indicators in FLSs. FISH assay confirmed the presence of lncRNA OIP5-AS1 in the cytoplasm, suggesting that it acts as a competing endogenous RNA (ceRNA). qRT-PCR showed that the expression of lncRNA OIP5-AS1 was upregulated in FLSs, while the expression of miR-410-3p was downregulated in FLSs. We also found that lncRNA OIP5-AS1 knockdown inhibited the proliferation and inflammation of FLSs. Moreover, the expression of Wnt7b, the downstream target gene of miR-410-3p, and the activation of the Wnt/ß-catenin signalling pathway were also inhibited by lncRNA OIP5-AS1 knockdown. These results suggested that lncRNA OIP5-AS1 promotes the activation of the Wnt/ß-catenin signalling pathway by regulating the miR-410-3p/Wnt7b signalling axis, thereby participating in the occurrence and development of RA.


Assuntos
Artrite Reumatoide , MicroRNAs , RNA Longo não Codificante , Sinoviócitos , Animais , Ratos , Artrite Reumatoide/genética , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células/genética , Fibroblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sinoviócitos/metabolismo , Via de Sinalização Wnt/genética
16.
Heliyon ; 9(11): e21936, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027735

RESUMO

Background: Yanghe Pingchuan Granule (YPG) is a patented Chinese medicine developed independently by the Anhui Provincial Hospital of Traditional Chinese Medicine. For many years, it has been used for the treatment of asthma with remarkable clinical effects. However, the composition of YPG is complex, and its potential active ingredients and mechanism of action for the treatment of asthma are unknown. Materials and methods: In this study, we investigated the potential mechanism of action of YPG in the treatment of asthma through a combination of bioinformatics and in vivo experimental validation. We searched for active compounds in YPG and asthma targets from multiple databases and obtained common targets. Subsequently, a protein-protein interaction (PPI) network for compound disease was constructed using the protein interaction database for Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, hematoxylin and eosin (H&E) staining, Masson staining, enzyme-linked immunosorbent assay (ELISA) analysis, immunofluorescence (IF) experiments, and Western blot (WB) experiments were performed to verify the possible mechanism of action of YPG for asthma treatment. Results: We obtained 72 active ingredients and 318 drug target genes that overlap with asthma. Serine/threonine-protein kinase (AKT1), tumor protein p53 (TP53), tumor necrosis factor (TNF), interleukin (IL)-6, IL-1ß, vascular endothelial growth factor-A (VEGFA), prostaglandin-endoperoxide synthase 2 (PTGS2), caspase-3 (CASP3), mitogen-activated protein kinase 3 (MAPK3) and epidermal growth factor receptor (EGFR) were the most relevant genes in the PPI network. KEGG analysis showed a high number of genes enriched for the nuclear factor kappa-B (NF-κB) signaling pathway. Animal experiments confirmed that YPG reduced inflammatory cell infiltration and down-regulated the expression of ovalbumin-induced inflammatory factors. Furthermore, YPG treatment decreased the protein expression of NFĸB1, nuclear factor kappa B kinase subunit beta (IKBKB), vascular endothelial growth factor (VEGF), and vascular endothelial growth factor receptor 2 (VEGFR2) in lung tissue. Conclusion: YPG has a positive effect on asthma by interfering with multiple targets. Furthermore, YPG may significantly inhibit the follicle-induced inflammatory response through the NF-ĸB signaling pathway.

17.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36678585

RESUMO

The Stephania tetrandra−Astragalus membranaceus herbal pair (FH) is a classic herbal pair widely used in the treatment of nephrotic syndrome (NS). The effects of Stephania tetrandra (FJ) and Astragalus membranaceus (HQ) on NS have been reported, but the mechanism of their combination on the improvement of NS are still unclear. The NS model was established by injecting adriamycin into the tail vein. FH intervention reduced the levels of serum triglyceride, total cholesterol, interleukin-6 (IL-6), blood urea nitrogen (BUN), urinary protein, and the gene expression levels of aquaporin 2 (AQP2) and arginine vasopressin (AVP) in NS rats. In addition, FH improved kidney injury in NS rats by inhibiting the expression of interleukin 13 (IL-13), phospho-signal transducers, and activators of transcription 6 (p-STAT6), Bax, cleaved-caspase3, while promoting the expression of Bcl-2. By comprehensive comparison of multiple indexes, the effects of FH on lipid metabolism, glomerular filtration rate, and inflammation were superior to that of FJ and HQ. Metabonomic studies showed that, compared with FJ and HQ, FH intervention significantly regulated tricarboxylic acid (TCA) cycle, cysteine and methionine metabolism, and alanine, aspartic acid and glutamic acid metabolism. Pearson correlation analysis showed that succinic acid and L-aspartic acid were negatively correlated with urinary protein, cystatin C (Cys C) and BUN (p < 0.05). In summary, FH could reduce renal injury and improve NS through inhibiting the IL-13/STAT6 signal pathway, regulating endogenous metabolic pathways, such as TCA cycle, and inhibiting the expression of AQP2 and AVP genes. This study provides a comprehensive strategy to reveal the mechanism of FH on the treatment of NS, and also provides a reasonable way to clarify the compatibility of traditional Chinese medicine.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35668775

RESUMO

Background: Rheumatoid arthritis (RA) is the most common autoimmune disease and affects multiple joints. Previous studies have shown that total saponins of Radix clematidis (TSC) have a clear therapeutic effect on RA, but the specific mechanism has not yet been clarified. Literature screening and previous research suggest that the lncRNA OIP5-AS1/miR-410-3p/Wnt7b signaling pathway exerts a regulatory effect on the pathogenesis of RA. In this study, we examined whether the TSC treatment of RA affects the lncRNA OIP5-AS1/miR-410-3p/Wnt7b pathway. Materials and Methods: Freund's complete adjuvant was used to create an adjuvant arthritis (AA) rat model with rat synovial cells being harvested and cultured. The experiment comprises a normal group, model group, TSC optimal-dose group, TSC optimal-dose group + lncRNA OIP5-AS1siRNA group, lncRNA OIP5-AS1 siRNA group, and lncRNA OIP5-AS1 siRNA + NC group. MMT was used to screen the optimal concentration of TSC. The level of lncRNA OIP5-AS1, miR-410-3p, Wnt7b, ß-catenin, c-Myc, cyclin D1, GSK-3ß, and SFRP4 mRNA were detected by real-time-qPCR, the expression of Wnt7b, ß-catenin, c-Myc, cyclin D1, GSK-3ß, and p-GSK-3ß (Ser9) protein were detected by immunofluorescence and Western blot. Results: We found that TSC inhibits the proliferation of RA FLS, TSC significantly reduced lncRNA OIP5-AS1, Wnt7b, ß-catenin, c-Myc, cyclin D1, and p-GSK-3ß/GSK-3ß mRNA/protein expression, whereas the miR-410-3p and SFRP4 mRNA/protein expression levels were significantly upregulated. Our data suggest that TSC can inhibit the excessive proliferation of FLS to treat RA, the mechanism of which may be closely related to regulation of the lncRNA OIP5-AS1/miR-410-3p /Wnt7b signaling axis and the Wnt signaling pathway.

19.
Front Pharmacol ; 13: 1093244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569297

RESUMO

Ferroptosis is a newly discovered form of non-apoptotic regulatory cell death driven by iron-dependent lipid peroxidation. Ferroptosis significantly differs from other forms of cell death in terms of biochemistry, genetics, and morphology. Ferroptosis affects many metabolic processes in the body, resulting in disruption of homeostasis, and is related to many types of lung disease. Although current research on ferroptosis remains in the early stage, existing studies have confirmed that ferroptosis is regulated by a variety of genes, mainly involving changes in genes involved in iron homeostasis and lipid peroxidation metabolism. Furthermore, the mechanism of ferroptosis is complex. This review summarizes the confirmed mechanisms that can cause ferroptosis, including activation of glutathione peroxidase 4, synthesis of glutathione, accumulation of reactive oxygen species, and the influence of ferrous ions and p53 proteins. In recent years, the mechanism of ferroptosis in the occurrence and development of many diseases has been studied; the occurrence of ferroptosis will produce an inflammatory storm, and most of the inducing factors and pathological manifestations of lung diseases are also inflammatory reactions. Therefore, we believe that the association between ferroptosis and lung disease deserves further study. This article aims to help readers to better understand the mechanism of ferroptosis, provide new ideas and targets for the treatment of lung diseases, and point out the direction for the development of new targeted drugs for the clinical treatment of lung diseases.

20.
J Pharm Pharmacol ; 74(6): 869-886, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35429380

RESUMO

OBJECTIVES: To explore gingerol's potential mechanism for treating liver cancer using network pharmacology and molecular docking technology and to conduct in-vitro experiments of human liver cancer cell HepG2 to verify important signalling pathways. METHODS: We obtained potential targets of gingerol derivatives (6-gingerol, 8-gingerol and 10-gingerol) from PubChem and SwissTargetPrediction websites and collected related targets for liver cancer with the help of GeneCards. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on key targets using the DAVID data platform and combined with Cytoscape 3.7.1 software to construct a component-target-signal pathway interaction map to study its mechanism of action. Subsequently, the components and key proteins were molecularly docked through Autodock Vina software. Finally, the important signal pathways were verified by HepG2 cell in-vitro experiments. KEY FINDINGS: A total of 318 drug targets were screened for gingerol derivatives, and 2509 gene targets related to liver cancer were collected. The Venn diagram showed that there were 104 intersection targets between gingerol derivatives and liver cancer. Module analysis results show that these intersection targets can be divided into 5 modules and 49 nodes. Bioinformatics analysis found that GO obtained 20 important functional items including cancer cell proliferation, protein kinase activity, phosphotransferase activity and kinase activity; KEGG enrichment analysis yielded a total of 20 key signal pathways including the PI3K-Akt signalling pathway. The results of molecular docking show that the binding energy of gingerol derivatives has good binding activity with PI3K and Akt. In-vitro experimental results show that gingerol derivatives and compound gingerol (compound gingerol is composed of 6-gingerol, 8-gingerol and 10-gingerol in a ratio of 7:1.5:1.5) can produce HepG2 cell proliferation inhibition, and each administration group can significantly increase the apoptosis rate of HepG2 cells and the fluorescence intensity of the nucleus and block the cell cycle in the S phase; the results of Western Blot and real-time quantitative PCR show that gingerol derivatives and compound gingerol can down-regulate the expression of Akt and p-Akt and up-regulate the expression of Bax/Bcl-2. And the effect of compound gingerol is more obvious than that of gingerol derivatives. CONCLUSIONS: The results of network pharmacology and experimental validation suggest that gingerol derivatives and compound gingerol can act against liver cancer by acting on the PI3K-Akt signalling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Catecóis , Medicamentos de Ervas Chinesas/farmacologia , Álcoois Graxos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA