Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(30): 14402-14417, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39011858

RESUMO

Sulfuration reactions dominate the synthesis of transition-metal dichalcogenides via chemical vapor deposition. A neglected critical issue is the evolution of crystal domain morphology and growth models caused by boundary layer development. In this study, we propose two growth models within a laminar flow field to investigate the kinetic mechanism of uniformly grown MoS2. We used supercritical fluid pre-deposition to obtain a well-distributed and low-crystallinity Mo precursor on the surface of a substrate to avoid non-stoichiometric supply in sulfuration. The development of the boundary layer was suppressed through mainstream force by adjusting the substrate slope angle. For growth within the underdeveloped laminar boundary layer, monolayer MoS2 with a size of 50 µm uniformly distributed on the full substrate with R = 85% (relative change in boundary layer thickness). Moreover, the growth constrained by surface chemical reactions tended to promote spatially uniform growth. However, within the fully developed laminar flow, the crystal domains preferentially grew vertically, which was attributed to the excessive crystal growth rate (g). Our results provide new insights into the controllable preparation of two-dimensional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA