Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Genet ; 18(4): 350-3, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9537417

RESUMO

Mitochondrial mutations are associated with a wide spectrum of human diseases. A common class of point mutations affects tRNA genes, and mutations in the tRNA-leu(UUR) gene (MTTL1) are the most frequently detected. In earlier studies, we showed that lung carcinoma cybrid cells containing high levels (greater than 95%) of mutated mtDNA from a patient with the pathological nucleotide pair (np) 3243 tRNA-leu(UUR) mutation can remain genotypically stable over time, and exhibit severe defects in mitochondrial respiratory metabolism. From such a cybrid containing 99% mutated mtDNA, we have isolated a spontaneous derivative that retains mutant mtDNA at this level but which has nevertheless reverted to the wild-type phenotype, based on studies of respiration, growth in selective media, mitochondrial protein synthesis and biogenesis of mitochondrial membrane complexes. The cells are heteroplasmic for a novel anticodon mutation in tRNA-leu(CUN) at np 12300, predicted to generate a suppressor tRNA capable of decoding UUR leucine codons. The suppressor mutation represents approximately 10% of the total mtDNA, but was undetectable in a muscle biopsy sample taken from the original patient or in the parental cybrid. These results indicate that the primary biochemical defect in cells with high levels of np 3243 mutated mtDNA is the inability to translate UUR leucine codons.


Assuntos
Mitocôndrias/genética , RNA de Transferência de Leucina/genética , Anticódon/genética , Anticódon/fisiologia , Northern Blotting , Análise Mutacional de DNA , DNA Mitocondrial/análise , DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Humanos , Fenótipo , Mutação Puntual/genética , Mutação Puntual/fisiologia , Reação em Cadeia da Polimerase , RNA de Transferência de Leucina/análise , RNA de Transferência de Leucina/fisiologia , Supressão Genética/fisiologia , Células Tumorais Cultivadas
2.
Genetics ; 154(1): 363-80, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10628996

RESUMO

The mitochondrial genotype of heteroplasmic human cell lines containing the pathological np 3243 mtDNA mutation, plus or minus its suppressor at np 12300, has been followed over long periods in culture. Cell lines containing various different proportions of mutant mtDNA remained generally at a consistent, average heteroplasmy value over at least 30 wk of culture in nonselective media and exhibited minimal mitotic segregation, with a segregation number comparable with mtDNA copy number (>/=1000). Growth in selective medium of cells at 99% np 3243 mutant mtDNA did, however, allow the isolation of clones with lower levels of the mutation, against a background of massive cell death. As a rare event, cell lines exhibited a sudden and dramatic diversification of heteroplasmy levels, accompanied by a shift in the average heteroplasmy level over a short period (<8 wk), indicating selection. One such episode was associated with a gain of chromosome 9. Analysis of respiratory phenotype and mitochondrial genotype of cell clones from such cultures revealed that stable heteroplasmy values were generally reestablished within a few weeks, in a reproducible but clone-specific fashion. This occurred independently of any straightforward phenotypic selection at the individual cell-clone level. Our findings are consistent with several alternate views of mtDNA organization in mammalian cells. One model that is supported by our data is that mtDNA is found in nucleoids containing many copies of the genome, which can themselves be heteroplasmic, and which are faithfully replicated. We interpret diversification and shifts of heteroplasmy level as resulting from a reorganization of such nucleoids, under nuclear genetic control. Abrupt remodeling of nucleoids in vivo would have major implications for understanding the developmental consequences of heteroplasmy, including mitochondrial disease phenotype and progression.


Assuntos
DNA Mitocondrial/genética , Mutação , Seleção Genética , Sequência de Bases , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Primers do DNA , Dimetil Sulfóxido/farmacologia , Genótipo , Humanos , Fenótipo , Células Tumorais Cultivadas
3.
Biochem Pharmacol ; 55(4): 397-403, 1998 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-9514073

RESUMO

Three novel peripheral-type benzodiazepine binding site (PBBS) ligands, NF 182, 213 and 262, along with the classically used PBBS ligands, PK 11195 and Ro5-4864, were found to inhibit, at micromolar concentrations and in dose-dependent manner, the proliferation of rat C6 glioma and human 1321N1 astrocytoma, without being cytotoxic. This antiproliferative effect is mediated by arrest in the G1 phase of the cell cycle and does not appear to be mediated by a specific interaction of these ligands with the peripheral-type benzodiazepine binding site.


Assuntos
Benzodiazepinas/metabolismo , Divisão Celular/efeitos dos fármacos , Oxazepinas/metabolismo , Oxazepinas/farmacologia , Animais , Benzodiazepinonas/metabolismo , Benzodiazepinonas/farmacologia , Sítios de Ligação , Linhagem Celular , Humanos , Isoquinolinas/metabolismo , Isoquinolinas/farmacologia , Cinética , Ligantes , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA