Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Nature ; 631(8021): 593-600, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926583

RESUMO

The current technologies to place new DNA into specific locations in plant genomes are low frequency and error-prone, and this inefficiency hampers genome-editing approaches to develop improved crops1,2. Often considered to be genome 'parasites', transposable elements (TEs) evolved to insert their DNA seamlessly into genomes3-5. Eukaryotic TEs select their site of insertion based on preferences for chromatin contexts, which differ for each TE type6-9. Here we developed a genome engineering tool that controls the TE insertion site and cargo delivered, taking advantage of the natural ability of the TE to precisely excise and insert into the genome. Inspired by CRISPR-associated transposases that target transposition in a programmable manner in bacteria10-12, we fused the rice Pong transposase protein to the Cas9 or Cas12a programmable nucleases. We demonstrated sequence-specific targeted insertion (guided by the CRISPR gRNA) of enhancer elements, an open reading frame and a gene expression cassette into the genome of the model plant Arabidopsis. We then translated this system into soybean-a major global crop in need of targeted insertion technology. We have engineered a TE 'parasite' into a usable and accessible toolkit that enables the sequence-specific targeting of custom DNA into plant genomes.


Assuntos
Arabidopsis , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Edição de Genes , Genoma de Planta , Oryza , Transposases , Transposases/metabolismo , Transposases/genética , Arabidopsis/genética , Oryza/genética , Genoma de Planta/genética , Elementos de DNA Transponíveis/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Fases de Leitura Aberta/genética , Elementos Facilitadores Genéticos/genética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Mutagênese Insercional/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Genética/métodos , Plantas Geneticamente Modificadas/genética , Endodesoxirribonucleases
2.
PLoS Genet ; 16(5): e1008681, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463832

RESUMO

A large fraction of plant genomes is composed of transposable elements (TE), which provide a potential source of novel genes through "domestication"-the process whereby the proteins encoded by TE diverge in sequence, lose their ability to catalyse transposition and instead acquire novel functions for their hosts. In Arabidopsis, ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) arose by domestication of the nuclease component of Harbinger class TE and acquired a new function as a component of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a histone H3K27me3 methyltransferase involved in regulation of host genes and in some cases TE. It was not clear how ALP1 associated with PRC2, nor what the functional consequence was. Here, we identify ALP2 genetically as a suppressor of Polycomb-group (PcG) mutant phenotypes and show that it arose from the second, DNA binding component of Harbinger transposases. Molecular analysis of PcG compromised backgrounds reveals that ALP genes oppose silencing and H3K27me3 deposition at key PcG target genes. Proteomic analysis reveals that ALP1 and ALP2 are components of a variant PRC2 complex that contains the four core components but lacks plant-specific accessory components such as the H3K27me3 reader LIKE HETEROCHROMATION PROTEIN 1 (LHP1). We show that the N-terminus of ALP2 interacts directly with ALP1, whereas the C-terminus of ALP2 interacts with MULTICOPY SUPPRESSOR OF IRA1 (MSI1), a core component of PRC2. Proteomic analysis reveals that in alp2 mutant backgrounds ALP1 protein no longer associates with PRC2, consistent with a role for ALP2 in recruitment of ALP1. We suggest that the propensity of Harbinger TE to insert in gene-rich regions of the genome, together with the modular two component nature of their transposases, has predisposed them for domestication and incorporation into chromatin modifying complexes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/metabolismo , Transposases/fisiologia , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Domínio Catalítico/genética , Células Cultivadas , Domesticação , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb/genética , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Células Sf9 , Spodoptera , Transposases/genética
3.
Int Nurs Rev ; 67(2): 294-299, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32367661

RESUMO

AIM: This investigation explored the extent to which nurses' own health is a priority for global National Nursing Associations. BACKGROUND: There is a growing body of evidence linking staff health and well-being and key dimensions of service quality, including patient safety, patient experience and the effectiveness of patient care. INTRODUCTION: The International Council of Nurses is a federation of more than 130 National Nurses Associations, representing more than 20 million nurses worldwide. Representatives from these Associations attended a Congress in Singapore in 2019 at which a survey was conducted. METHODS: A convenience sample of 37 leaders of National Nurse Associations from 33 countries and 61 nurse representatives took part in a survey. RESULTS: The majority of nurse leaders and participants believed that nurses' own health should be a priority to be addressed, principally because a healthy nurse is better able to provide good patient care. All of the examples offered about how these Associations address nurses' own health were about actions to prompt individual health behaviour change. DISCUSSION: The National Nurses Associations did not have a common terminology to talk about nurses' own health. Taking care of one's own health was included as part of the professional role and most nurse leaders thought that working conditions contributed to ill health. CONCLUSIONS: There is widespread agreement that nurses' own health matters but for most National Nurses Associations it is not a current priority. IMPLICATIONS FOR NURSING POLICY: Going forward nurse health and wellbeing should be a core principle for health services and professional associations, and additional research is needed that demonstrates if improving working environments contributes to nurse retention and recruitment.


Assuntos
Nível de Saúde , Cuidados de Enfermagem/estatística & dados numéricos , Recursos Humanos de Enfermagem/estatística & dados numéricos , Sociedades de Enfermagem/estatística & dados numéricos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Singapura , Inquéritos e Questionários
4.
Transgenic Res ; 25(2): 187-93, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26660729

RESUMO

Most soybean cultivars produce buff colored seeds due to a seed coat specific siRNA mechanism. This phenomenon is specifically limited to the seed coat and produces a strong visual effect, thus, a strategy to evade the silencing was used to produce a maternal transgenic marker for soybeans. Expression of a rice chalcone synthase transgene with little DNA sequence homology to the soybean siRNAs resulted in dark colored seed coats. This phenotype is the result of anthocyanin pigment production and does not appear to affect other tissues. This novel approach for producing an easily scored transgenic marker for soybean will facilitate high-throughput screening and analysis of transgenic soybean.


Assuntos
Aciltransferases/genética , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Sementes/genética , Aciltransferases/biossíntese , Biomarcadores , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Oryza/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , RNA Interferente Pequeno/genética , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento
5.
Nature ; 461(7267): 1130-4, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19847266

RESUMO

High-copy-number transposable elements comprise the majority of eukaryotic genomes where they are major contributors to gene and genome evolution. However, it remains unclear how a host genome can survive a rapid burst of hundreds or thousands of insertions because such bursts are exceedingly rare in nature and therefore difficult to observe in real time. In a previous study we reported that in a few rice strains the DNA transposon mPing was increasing its copy number by approximately 40 per plant per generation. Here we exploit the completely sequenced rice genome to determine 1,664 insertion sites using high-throughput sequencing of 24 individual rice plants and assess the impact of insertion on the expression of 710 genes by comparative microarray analysis. We find that the vast majority of transposable element insertions either upregulate or have no detectable effect on gene transcription. This modest impact reflects a surprising avoidance of exon insertions by mPing and a preference for insertion into 5' flanking sequences of genes. Furthermore, we document the generation of new regulatory networks by a subset of mPing insertions that render adjacent genes stress inducible. As such, this study provides evidence for models first proposed previously for the involvement of transposable elements and other repetitive sequences in genome restructuring and gene regulation.


Assuntos
Elementos de DNA Transponíveis/genética , Amplificação de Genes/genética , Dosagem de Genes/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Região 5'-Flanqueadora/genética , Alelos , Arabidopsis/genética , Temperatura Baixa , Variações do Número de Cópias de DNA/genética , Éxons , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/genética , Transgenes/genética
6.
J Clin Pharm Ther ; 40(2): 125-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25545040

RESUMO

WHAT IS KNOWN AND OBJECTIVE: The current pharmacotherapeutic treatment of major depressive disorder (MDD) generally takes weeks to be effective. As the molecular action of these drugs is immediate, the mechanistic basis for this lag is unclear. A drug that has a more rapid onset of action would be a major therapeutic advance and also be a useful comparator to provide valuable mechanistic insight into the disorder and its treatment. COMMENT: Recent evidence suggests that ketamine produces rapid-onset antidepressant action. Important questions are as follows: is it specific or coincidental to other effects; is there a dose-response relationship; and is the mechanism related to that of current antidepressants. NMDA receptor antagonism is unlikely the explanation for ketamine's antidepressant action. WHAT IS NEW AND CONCLUSION: It is not an exaggeration to state that the new findings, if validated, might produce a revolution in understanding and treating depressive disorders.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Ketamina/uso terapêutico , Animais , Antidepressivos/administração & dosagem , Antidepressivos/química , Ensaios Clínicos como Assunto , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Ketamina/administração & dosagem , Ketamina/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
7.
Plant Physiol ; 161(1): 36-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124322

RESUMO

Insertional mutagenesis is a powerful tool for determining gene function in both model and crop plant species. Tnt1, the transposable element of tobacco (Nicotiana tabacum) cell type 1, is a retrotransposon that replicates via an RNA copy that is reverse transcribed and integrated elsewhere in the plant genome. Based on studies in a variety of plants, Tnt1 appears to be inactive in normal plant tissue but can be reactivated by tissue culture. Our goal was to evaluate the utility of the Tnt1 retrotransposon as a mutagenesis strategy in soybean (Glycine max). Experiments showed that the Tnt1 element was stably transformed into soybean plants by Agrobacterium tumefaciens-mediated transformation. Twenty-seven independent transgenic lines carrying Tnt1 insertions were generated. Southern-blot analysis revealed that the copy number of transposed Tnt1 elements ranged from four to 19 insertions, with an average of approximately eight copies per line. These insertions showed Mendelian segregation and did not transpose under normal growth conditions. Analysis of 99 Tnt1 flanking sequences revealed insertions into 62 (62%) annotated genes, indicating that the element preferentially inserts into protein-coding regions. Tnt1 insertions were found in all 20 soybean chromosomes, indicating that Tnt1 transposed throughout the soybean genome. Furthermore, fluorescence in situ hybridization experiments validated that Tnt1 inserted into multiple chromosomes. Passage of transgenic lines through two different tissue culture treatments resulted in Tnt1 transposition, significantly increasing the number of insertions per line. Thus, our data demonstrate the Tnt1 retrotransposon to be a powerful system that can be used for effective large-scale insertional mutagenesis in soybean.


Assuntos
Cromossomos de Plantas , Genômica/métodos , Glycine max/genética , Mutagênese Insercional/métodos , Retroelementos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Southern Blotting , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Dosagem de Genes , Hibridização in Situ Fluorescente , Técnicas de Embriogênese Somática de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Glycine max/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transformação Genética
8.
bioRxiv ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38352530

RESUMO

Screening a transposon-mutagenized soybean population led to the discovery of a recessively inherited chlorotic phenotype. This "vir1" phenotype results in smaller stature, weaker stems, and a smaller root system with smaller nodules. Genome sequencing identified 15 candidate genes with mutations likely to result in a loss of function. Amplicon sequencing of a segregating population was then used to narrow the list to a single candidate mutation, a single-base change in Glyma.07G102300 that disrupts splicing of the second intron. Single cell transcriptomic profiling indicates that this gene is expressed primarily in mesophyll cells and RNA sequencing data indicates it is upregulated in germinating seedlings by cold stress. Previous studies have shown that mutations to Os05g34040, the rice homolog of Glyma.07G102300, produced a chlorotic phenotype that was more pronounced in cool temperatures. Growing soybean vir1 mutants at lower temperatures also resulted in a more severe phenotype. In addition, transgenic expression of wild type Glyma.07G102300 in the knockout mutant of the Arabidopsis homolog At4930720 rescues the chlorotic phenotype, further supporting the hypothesis that the mutation in Glyma.07G102300 is causal of the vir1 phenotype.

9.
Methods Mol Biol ; 2686: 351-363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540369

RESUMO

The ß-glucuronidase (GUS) reporter gene system is an important technique with versatile uses in the study of flower development in a broad range of species. Transcriptional and translational GUS fusions are used to characterize gene and protein expression patterns, respectively, during reproductive development. Additionally, GUS reporters can be used to map cis-regulatory elements within promoter sequences and to investigate whether genes are regulated post-transcriptionally. Gene trap/enhancer trap GUS constructs can be used to identify novel genes involved in flower development and marker lines useful in mutant characterization. Flower development studies primarily have used the histochemical assay in which inflorescence tissue from transgenic plants containing GUS reporter genes are stained for GUS activity and examined as whole-mounts or subsequently embedded into wax and examined as tissue sections. In addition, quantitative GUS activity assays can be performed on either floral extracts or intact flowers using a fluorogenic GUS substrate. Another use of GUS reporters is as a screenable marker for plant transformation. A simplified histochemical GUS assay can be used to quickly identify transgenic tissues.


Assuntos
Flores , Glucuronidase , Glucuronidase/genética , Glucuronidase/metabolismo , Regiões Promotoras Genéticas , Genes Reporter , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Mob DNA ; 14(1): 1, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774502

RESUMO

BACKGROUND: DNA transposable elements are mobilized by a "cut and paste" mechanism catalyzed by the binding of one or more transposase proteins to terminal inverted repeats (TIRs) to form a transpositional complex. Study of the rice genome indicates that the mPing element has experienced a recent burst in transposition compared to the closely related Ping and Pong elements. A previously developed yeast transposition assay allowed us to probe the role of both internal and terminal sequences in the mobilization of these elements. RESULTS: We observed that mPing and a synthetic mPong element have significantly higher transposition efficiency than the related autonomous Ping and Pong elements. Systematic mutation of the internal sequences of both mPing and mPong identified multiple regions that promote or inhibit transposition. Simultaneous alteration of single bases on both mPing TIRs resulted in a significant reduction in transposition frequency, indicating that each base plays a role in efficient transposase binding. Testing chimeric mPing and mPong elements verified the important role of both the TIRs and internal regulatory regions. Previous experiments showed that the G at position 16, adjacent to the 5' TIR, allows mPing to have higher mobility. Alteration of the 16th and 17th base from mPing's 3' end or replacement of the 3' end with Pong 3' sequences significantly increased transposition frequency. CONCLUSIONS: As the transposase proteins were consistent throughout this study, we conclude that the observed transposition differences are due to the element sequences. The presence of sub-optimal internal regions and TIR bases supports a model in which transposable elements self-limit their activity to prevent host damage and detection by host regulatory mechanisms. Knowing the role of the TIRs, adjacent sub-TIRs, and internal regulatory sequences allows for the creation of hyperactive elements.

11.
Plant Genome ; 16(2): e20171, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34904377

RESUMO

De novo purine biosynthesis is required for the incorporation of fixed nitrogen in ureide exporting nodules, as formed on soybean [Glycine max (L.) Merr.] roots. However, in many cases, the enzymes involved in this pathway have been deduced strictly from genome annotations with little direct genetic evidence, such as mutant studies, to confirm their biochemical function or importance to nodule development. While efforts to develop large mutant collections of soybean are underway, research on this plant is still hampered by the inability to obtain mutations in any specific gene of interest. Using a forward genetic approach, as well as CRISPR/Cas9 gene editing via Agrobacterium rhizogenes-mediated hairy root transformation, we identified and characterized the role of GmUOX (Uricase) and GmXDH (Xanthine Dehydrogenase) in nitrogen fixation and nodule development in soybean. The gmuox knockout soybean mutants displayed nitrogen deficiency chlorosis and early nodule senescence, as exemplified by the reduced nitrogenase (acetylene reduction) activity in nodules, the internal greenish-white internal appearance of nodules, and diminished leghemoglobin production. In addition, gmuox1 nodules showed collapsed infected cells with degraded cytoplasm, aggregated bacteroids with no discernable symbiosome membranes, and increased formation of poly-ß-hydroxybutyrate granules. Similarly, knockout gmxdh mutant nodules, generated with the CRISPR/Cas9 system, also exhibited early nodule senescence. These genetic studies confirm the critical role of the de novo purine metabolisms pathway not only in the incorporation of fixed nitrogen but also in the successful development of a functional, nitrogen-fixing nodule. Furthermore, these studies demonstrate the great utility of the CRISPR/Cas9 system for studying root-associated gene traits when coupled with hairy root transformation.


Assuntos
Glycine max , Fixação de Nitrogênio , Glycine max/genética , Glycine max/microbiologia , Fixação de Nitrogênio/genética , Urato Oxidase/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Nitrogênio/metabolismo , Purinas
12.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37273575

RESUMO

The plant-specific RNA Polymerase V (Pol V) plays a key role in gene silencing, but its role in repair of double stranded DNA breaks is unclear. Excision of the transposable element mPing creates double stranded breaks that are repaired by NHEJ. We measured mPing excision site repair in multiple DNA methylation mutants including pol V using an mPing : GFP reporter. Two independent mutant alleles of pol V showed less GFP expression, indicating that the Pol V protein plays a role in excision site repair. Sequence analysis of the pol V excision sites indicated an elevated rate of large deletions consistent with less efficient repair. These results clarify the role of Pol V, but not other RNA-directed DNA methylation proteins (Pol IV) or maintenance DNA methylation pathways ( MET1 ), in the repair of double-strand DNA breaks.

13.
Front Cell Dev Biol ; 11: 1184046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363729

RESUMO

Introduction: Class II DNA transposable elements account for significant portions of eukaryotic genomes and contribute to genome evolution through their mobilization. To escape inactivating mutations and persist in the host genome over evolutionary time, these elements must be mobilized enough to result in additional copies. These elements utilize a "cut and paste" transposition mechanism that does not intrinsically include replication. However, elements such as the rice derived mPing element have been observed to increase in copy number over time. Methods: We used yeast transposition assays to test several parameters that could affect the excision and insertion of mPing and its related elements. This included development of novel strategies for measuring element insertion and sequencing insertion sites. Results: Increased transposase protein expression increased the mobilization frequency of a small (430 bp) element, while overexpression inhibition was observed for a larger (7,126 bp) element. Smaller element size increased both the frequency of excision and insertion of these elements. The effect of yeast ploidy on element excision, insertion, and copy number provided evidence that homology dependent repair allows for replicative transposition. These elements were found to preferentially insert into yeast rDNA repeat sequences. Discussion: Identifying the parameters that influence transposition of these elements will facilitate their use for gene discovery and genome editing. These insights in to the behavior of these elements also provide important clues into how class II transposable elements have shaped eukaryotic genomes.

14.
Plant Physiol ; 157(2): 552-62, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21844309

RESUMO

Insertional mutagenesis of legume genomes such as soybean (Glycine max) should aid in identifying genes responsible for key traits such as nitrogen fixation and seed quality. The relatively low throughput of soybean transformation necessitates the use of a transposon-tagging strategy where a single transformation event will produce many mutations over a number of generations. However, existing transposon-tagging tools being used in legumes are of limited utility because of restricted transposition (Ac/Ds: soybean) or the requirement for tissue culture activation (Tnt1: Medicago truncatula). A recently discovered transposable element from rice (Oryza sativa), mPing, and the genes required for its mobilization, were transferred to soybean to determine if it will be an improvement over the other available transposon-tagging tools. Stable transformation events in soybean were tested for mPing transposition. Analysis of mPing excision at early and late embryo developmental stages revealed increased excision during late development in most transgenic lines, suggesting that transposition is developmentally regulated. Transgenic lines that produced heritable mPing insertions were identified, with the plants from the highest activity line producing at least one new insertion per generation. Analysis of the mPing insertion sites in the soybean genome revealed that features displayed in rice were retained including transposition to unlinked sites and a preference for insertion within 2.5 kb of a gene. Taken together these findings indicate that mPing has the characteristics necessary for an effective transposon-tagging resource.


Assuntos
Elementos de DNA Transponíveis , Glycine max/genética , Mutagênese Insercional/métodos , Oryza/genética , Proteínas de Fluorescência Verde/genética , Mutação , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética
15.
Nature ; 439(7078): 805-10, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16482149

RESUMO

Pollen-pistil interactions are crucial for controlling plant mating. For example, S-RNase-based self-incompatibility prevents inbreeding in diverse angiosperm species. S-RNases are thought to function as specific cytotoxins that inhibit pollen that has an S-haplotype that matches one of those in the pistil. Thus, pollen and pistil factors interact to prevent mating between closely related individuals. Other pistil factors, such as HT-B, 4936-factor and the 120 kDa glycoprotein, are also required for pollen rejection but do not contribute to S-haplotype-specificity per se. Here we show that S-RNase is taken up and sorted to a vacuolar compartment in the pollen tubes. Antibodies to the 120 kDa glycoprotein label the compartment membrane. When the pistil does not express HT-B or 4936-factor, S-RNase remains sequestered, unable to cause rejection. Similarly, in wild-type pistils, compatible pollen tubes degrade HT-B and sequester S-RNase. We suggest that S-RNase trafficking and the stability of HT-B are central to S-specific pollen rejection.


Assuntos
Nicotiana/enzimologia , Nicotiana/fisiologia , Processamento de Proteína Pós-Traducional , Ribonucleases/metabolismo , Anticorpos/análise , Anticorpos/imunologia , Fatores Biológicos/metabolismo , Estabilidade Enzimática , Glicoproteínas/química , Glicoproteínas/metabolismo , Haplótipos , Endogamia , Modelos Biológicos , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/fisiologia , Transporte Proteico , Reprodução/fisiologia , Especificidade da Espécie , Especificidade por Substrato , Fatores de Tempo , Nicotiana/anatomia & histologia , Nicotiana/genética , Vacúolos/enzimologia
16.
Front Microbiol ; 13: 821808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283838

RESUMO

Xanthomonas arboricola pv. pruni (Xap) causes bacterial spot, a major worldwide disease of Prunus species. Very few chemical management options are available for this disease and frequent applications of oxytetracycline (OTC) in the United States peach orchards have raised concerns about resistance development. During 2017-2020, 430 Xap strains were collected from ten peach orchards in South Carolina. Seven OTC-resistant (OTC R ) Xap strains were found in 2017 and 2020 from four orchards about 20-270 km apart. Interestingly, the seven strains were also resistant to streptomycin (STR). Six strains grew on media amended with ≤100 µg/mL OTC, while one strain, R1, grew on ≤250 µg/mL OTC. Genome sequence analysis of four representative OTC R strains revealed a 14-20 kb plasmid carrying tetC, tetR, and strAB in each strain. These three genes were transferable to Xanthomonas perforans via conjugation, and they were PCR confirmed in all seven OTC R Xap strains. When tetC and tetR were cloned and expressed together in a sensitive strain, the transconjugants showed resistance to ≤100 µg/mL OTC. When tetC was cloned and expressed alone in a sensitive strain, the transconjugants showed resistance to ≤250 µg/mL OTC. TetC and tetR expression was inducible by OTC in all six wild-type strains resistant to ≤100 µg/mL OTC. However, in the R1 strain resistant to ≤250 µg/mL OTC, tetR was not expressed, possibly due to the presence of Tn3 in the tetR gene, and in this case tetC was constitutively expressed. These data suggest that tetC confers OTC resistance in Xap strains, and tetR regulates the level of OTC resistance conferred by tetC. To our knowledge, this is the first report of OTC resistance in plant pathogenic xanthomonads.

17.
Int Nurs Rev ; 58(3): 328-31, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21848778

RESUMO

BACKGROUND: Chronic and non-communicable diseases (NCDs) are a growing and enormous challenge that faces countries across the world. Low- and middle-income countries are disproportionately affected. CONTRIBUTORY FACTORS: Three risk factors--tobacco use, poor diet (including excessive alcohol intake) and lack of physical activity--contribute to four major chronic diseases--cardiovascular, chronic obstructive pulmonary disease, diabetes and some cancers, which are responsible for over 50% of deaths worldwide. POTENTIAL SOLUTIONS: International governmental and non-governmental agencies are becoming increasingly concerned and active. Nurses across the world are well positioned to play a significant role and work with a wide range of people involved in the prevention and management of these chronic diseases.


Assuntos
Doença Crônica/prevenção & controle , Países em Desenvolvimento , Saúde Global , Promoção da Saúde , Doença Crônica/mortalidade , Doença Crônica/enfermagem , Política de Saúde , Humanos , Papel do Profissional de Enfermagem , Fatores de Risco , Nações Unidas
18.
Plant Direct ; 5(1): e00300, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33506165

RESUMO

Modern plant breeding increasingly relies on genomic information to guide crop improvement. Although some genes are characterized, additional tools are needed to effectively identify and characterize genes associated with crop traits. To address this need, the mPing element from rice was modified to serve as an activation tag to induce expression of nearby genes. Embedding promoter sequences in mPing resulted in a decrease in overall transposition rate; however, this effect was negated by using a hyperactive version of mPing called mmPing20. Transgenic soybean events carrying mPing-based activation tags and the appropriate transposase expression cassettes showed evidence of transposition. Expression analysis of a line that contained a heritable insertion of the mmPing20F activation tag indicated that the activation tag induced overexpression of the nearby soybean genes. This represents a significant advance in gene discovery technology as activation tags have the potential to induce more phenotypes than the original mPing element, improving the overall effectiveness of the mutagenesis system.

19.
Proc Natl Acad Sci U S A ; 104(26): 10962-7, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17578919

RESUMO

An active miniature inverted repeat transposable element (MITE), mPing, was discovered by computer-assisted analysis of rice genome sequence. The mPing element is mobile in rice cell culture and in a few rice strains where it has been amplified to >1,000 copies during recent domestication. However, determination of the transposase source and characterization of the mechanism of transposition have been hampered by the high copy number of mPing and the presence of several candidate autonomous elements in the rice genome. Here, we report that mPing is active in Arabidopsis thaliana, where its transposition is catalyzed by three sources of transposase from rice: the autonomous Ping and Pong elements and by a cDNA derived from a Ping transcript. In addition to transposase, the product of a second element-encoded ORF of unknown function is also required for mPing transposition. Excision of mPing in A. thaliana is usually precise, and transposed copies usually insert into unlinked sites in the genome that are preferentially in or near genes. As such, this will be a valuable assay system for the dissection of MITE transposition and a potentially powerful tagging system for gene discovery in eukaryotes.


Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Genes de Plantas/genética , Oryza/genética , Sequência de Bases , Genoma de Planta , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , RNA Mensageiro , Transposases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA