Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(2): pgae042, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38415221

RESUMO

Storms can have devasting effects on shorelines, causing flooding and the destruction of property and infrastructure. As global warming and the frequency and magnitude of tropical storms increase, barrier islands comprising 10% of the world's coast may undergo significant change caused by beach erosion, loss of dunes, and formation of washovers and tidal inlets. Understanding how storms affect sediment transport at tidal inlets is an understudied subject that directly influences barrier island erosional-depositional processes and long-term sediment budgets. This study models hydrodynamics and sediment transport at a conceptualized mixed-energy, mesotidal inlet system using 10 synthetic storm tracks. We investigate the provenance and the role of various storm characteristics and timing between the peak storm surge and high tide on sediment fluxes for different grain sizes. We find that most storms (38 of 40) cause a net import of sediment into the basin that is sourced primarily from the updrift and downdrift nearshore and secondly from the ebb-delta. Very little sediment comes from inlet channel scour. Cumulative (net) transport correlates well with peak significant wave height because wave height influences bottom shear stresses and sediment suspension on the ebb-tidal delta and in the nearshore. The duration of the storm surge also correlates with net transport because it controls the period of flood-directed currents. Our findings help explain the formation of flood deltas inside tidal inlets and the formation of sand shoals in backbarrier regions. Storm-induced enlargement of these deposits represents a permanent long-term loss of sand from barrier islands that will lead to erosion.

2.
Nat Commun ; 14(1): 7117, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932284

RESUMO

Much of the world's population lives close to coastlines and this proximity is becoming increasingly impactful because of sea-level rise (SLR). Barrier islands and backbarrier saltmarshes, which comprise >10% of these coasts, are particularly susceptible. To better understand this risk, we model backbarrier morphologic and hydrodynamic evolution over a 200-year period of SLR, incorporating an erodible bed and a range of grain sizes. Here, we show that reduction in intertidal area creates negative feedback, shifting transport of coarse sediment (silt and sand) through the inlet from net export to net import. Imposing a modest marsh vertical accretion rate decreases the period of silt and sand import to 40 years (years 90 to 130) before being exported again. Clay is continuously exported thereby decreasing inorganic deposition on marshes and threatening their sustainability. Simulated marsh loss increases tidal prism and the volume of sand contained in ebb deltas, depleting coastal sand resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA