Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Skin Res Technol ; 28(5): 749-758, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35789503

RESUMO

BACKGROUND: As people have regularly worn facial masks due to the coronavirus disease 2019 (COVID-19) pandemic, mask-wear-related adverse effects on the skin have been recognized. The aim of this study was to explore skin changes, their seasonal variations in the general population caused by commonly used masks and a possible mechanism underlying negative effects of mask-wearing. MATERIALS AND METHODS: Eighteen Japanese females participated in the study during summer and winter in Japan. Skin characteristics were measured in the non-mask-wearing preauricular area and the mask-wearing cheek and perioral areas. RESULTS: Trans-epidermal water loss (TEWL) on the cheek area tended to be increased in winter, which was positively correlated with skin scaliness on the same area. Ceramide (CER) content and composition in the mask-covered stratum corneum (SC) were slightly changed between summer and winter, and CER [NP]/[NS] ratio was negatively correlated with the TEWL on the perioral skin in winter. Skin hydration and sebum secretion were higher on the cheek compared to the perioral area in summer. Skin redness was particularly high on the cheek in winter. CONCLUSION: Mask-wear-related skin changes were season- and facial site-specific, and alterations in SC CER may play a role in barrier-related skin problems caused by mask use.


Assuntos
COVID-19 , Pandemias , Ceramidas , Feminino , Humanos , Estações do Ano , Água
2.
BMC Oral Health ; 21(1): 661, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930236

RESUMO

BACKGROUND: Oral dryness is a common symptom that may interfere with swallowing, chewing, and taste. The most common reason for oral dryness is hyposalivation. Some individuals experiencing oral dryness do not have hyposalivation, however, and the reverse is also true. Here, we focused on healthy individuals with a lower salivary flow rate and evaluated the relationship between the perception of oral dryness and salivary parameters to clarify the cause underlying the perception of oral dryness. METHODS: A total of 59 participants were divided into 2 groups with a lower or higher salivary flow rate according to the median salivary flow rate. In participants with a lower salivary flow rate, we assessed salivary bacterial counts, protease activities, protein concentrations, oral parameters, and the subjective perception of oral dryness. RESULTS: Protease activities and concentrations of protease inhibitors such as cystatin-D and cystatin-SA in the saliva of participants experiencing oral dryness were significantly higher and lower, respectively, than in those not experiencing oral dryness, even though no difference in the salivary flow rate was detected. Salivary cystatin-D and cystatin-SA concentrations correlated negatively with salivary protease activities. CONCLUSIONS: The composition of salivary protease inhibitors and increased protease activities affect the subjective perception of oral dryness.


Assuntos
Anti-Infecciosos , Xerostomia , Nível de Saúde , Humanos , Inibidores de Proteases , Saliva
3.
JMIR Res Protoc ; 12: e47024, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294611

RESUMO

BACKGROUND: Human health status can be measured on the basis of many different parameters. Statistical relationships among these different health parameters will enable several possible health care applications and an approximation of the current health status of individuals, which will allow for more personalized and preventive health care by informing the potential risks and developing personalized interventions. Furthermore, a better understanding of the modifiable risk factors related to lifestyle, diet, and physical activity will facilitate the design of optimal treatment approaches for individuals. OBJECTIVE: This study aims to provide a high-dimensional, cross-sectional data set of comprehensive health care information to construct a combined statistical model as a single joint probability distribution and enable further studies on individual relationships among the multidimensional data obtained. METHODS: In this cross-sectional observational study, data were collected from a population of 1000 adult men and women (aged ≥20 years) matching the age ratio of the typical adult Japanese population. Data include biochemical and metabolic profiles from blood, urine, saliva, and oral glucose tolerance tests; bacterial profiles from feces, facial skin, scalp skin, and saliva; messenger RNA, proteome, and metabolite analyses of facial and scalp skin surface lipids; lifestyle surveys and questionnaires; physical, motor, cognitive, and vascular function analyses; alopecia analysis; and comprehensive analyses of body odor components. Statistical analyses will be performed in 2 modes: one to train a joint probability distribution by combining a commercially available health care data set containing large amounts of relatively low-dimensional data with the cross-sectional data set described in this paper and another to individually investigate the relationships among the variables obtained in this study. RESULTS: Recruitment for this study started in October 2021 and ended in February 2022, with a total of 997 participants enrolled. The collected data will be used to build a joint probability distribution called a Virtual Human Generative Model. Both the model and the collected data are expected to provide information on the relationships between various health statuses. CONCLUSIONS: As different degrees of health status correlations are expected to differentially affect individual health status, this study will contribute to the development of empirically justified interventions based on the population. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/47024.

5.
Sci Rep ; 8(1): 17170, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464187

RESUMO

Age-related decreases in olfactory sensitivity are often accompanied by a decrease in the quality of life. However, the molecular mechanisms underlying these changes are not well described. Inhaled substances including odorants are detected by sensory neurons in the olfactory cleft covered with a layer of mucus. This olfactory mucus is the first molecular machinery responsible for tissue protection and for detection of environmental odorants. Yet, little is known about the molecular identities of the actors because of the lack of information on the mucus proteome and its age-related changes. Here, we sampled human mucus from different nasal locations and from young and elderly subjects. The composition of the mucus was extensively analyzed by shotgun proteomic analysis for a vast array of proteins. We also explored correlations between the levels of each mucus proteins with the olfactory sensitivity of subjects. This analysis revealed previously unrecognized proteins with potentially important functions in olfaction. Taken together, this report describes the most comprehensive catalogue of the nasal mucus proteins to date, their positional and age-related differences, and candidate proteins associated with olfaction. This catalogue will provide fundamental information useful for future studies, such as identification of olfactory auxiliary proteins, causes of age-related declines in olfaction, and biomarkers for neurodegenerative disorders.


Assuntos
Muco/química , Mucosa Nasal/química , Proteoma/análise , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA